1. 집합 $X = \{1, \ 2, \ 3, \ 4\}$ 일 때, 함수 $f: X \to X$ 가 X 의 임의의 원소 x 에 대하여 $f(x) \le x$ 를 만족한다. 이 때, 함수 f 의 개수는?

$$f(1)$$
의 값이 될 수 있는 것은
1 의 1 개 \iff $f(1) \le 1$
 $f(2)$ 의 값이 될 수 있는 것은
1, 2 의 2 개 \iff $f(2) \le 2$
 $f(3)$ 의 값이 될 수 있는 것은
1, 2, 3 의 3개 \iff $f(3) \le 3$
 $f(4)$ 의 값이 될 수 있는 것은
1, 2, 3, 4 의 4개 \iff $f(4) \le 4$
따라서, 구하는 함수 f 의 개수는
 $1 \cdot 2 \cdot 3 \cdot 4 = 24$ (개)

 ${f 2.}$ 일차 이하의 다항함수 y=f(x) 가 다음 세 조건을 만족한다.

 $I. f(0) \le f(1)$

 $II. \ f(2) \ge f(3)$ $III. \ f(1) = 1$

이 때, 다음 중 옳은 것을 모두 고르면?

< 보기>

© f(-1) > f(1)

2 0

③ ①, 心

④ ⋽, ७

(5) (7), (L), (E)

해설

일차 이하의 다항함수 중 조건 I, II를 만족하는함수는

상수함수이므로 조건 \mathbb{H} 에 의하여 f(x) = 1 이다. 따라서 옳은 것은 \bigcirc 뿐이다.

3. 집합 $X = \{a,b,c\}, \ Y = \{1,2,3,4\}$ 에 대하여 함수 $f: X \to Y$ 에서 치역의 원소의 개수가 2 개인 함수 f 의 개수를 구하시오.

<u>개</u>

➢ 정답: 36<u>개</u>

에설 원소가 2 개인 치역은 {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}로 6 개이다. 정의역의 원소가 3 개, 공역의 원소가 2 개인함수의 개수는 $2^3 = 8$ 인데 이 중에서 치역의 원소가 1 개인 함수가 각각 2 개이므로 8-2 = 6따라서 $6 \times 6 = 36$ 개 4. 두 집합 $A = \{-1, 0, 1\}, B = \{-2, -1, 0, 1, 2\}$ 에서 A 의 모든 원소 x 에 대하여 $f(x) = f(x^2)$ 으로 되는 A 에서 B 로의 함수 f 의 개수는?

에실
$$f(-1) = f(1), f(0) = f(0) 이므로$$
A 의 원소 1 이 대응하는 방법의 수는 5 가지
A 의 원소 0 이 대응하는 방법의 수는 5 가지
∴ 5×5 = 25 (가지)

5. 집합 $A = \{1, 2, 3\}$ 에서 집합 $B = \{3, 4, 5, 6\}$ 로의 함수 f 가 일대일 함수이다. f 중에서 임의의 x 에 대하여 $f(x) \neq x$ 인 것의 개수는?

6. 두 집합 X = {-1, 0, 1}, Y = {-2, -1, 0, 1, 2}에 대하여 X 에서 Y 로의 함수 중 다음 조건을 모두 만족시키는 함수 f 의 개수는 몇 개인가?

$$X$$
 의 임의의 두 원소 x_1, x_2 에 대하여 I. $f(x_1+x_2)=f(x_1)+f(x_2)$ II. $f(x_1)=f(x_2)$ 이면 $x_1=x_2$

해섴

① 2 개 ② 4 개 ③ 6 개 ④ 8 개 ⑤ 12 개

$$f(0) = f(0) + f(0)$$
 에서 $f(0) = 0$
 $x_1 = 1$, $x_2 = -1$ 이면
 $f(0) = f(1) + f(-1)$ 에서, $f(-1) = -f(1)$
이때, 조건 II 에 의해
 $f(1) \neq 0$, $f(-1) \neq 0$
따라서, 두 조건을 만족시키는
함수 f 의 개수는 0 이 대응 할 수 있는
원소는 0 의 1 가지,
 1 이 대응할 수 있는 원소는
 -2 , -1 , 1 , 2 의 4 가지,
 -1 이 대응할 수 있는 원소는 $-f(1)$ 의 1 가지.

따라서, $1 \times 4 \times 1 = 4$ (개)

조건 I 에서, $x_1 = 0$, $x_2 = 0$ 이면

7. $A = \{1, 2, 3, 4\}, B = \{a, b\}$ 일 때, 함수 $f: A \to B$ 중에서 치역이 공역과 일치하는 것은 몇 개인가?

해설
$$A$$
의 원소 $1,2,3,4$ 를 두 개의 조로 나눈 다음, B 의 원소 a,b 에 분배하는 방법을 생각해 보면 두 개의 조로 나누는 방법은 $(1\, 7,3\, 7)$ 로 나누는 방법과 $(2\, 7,2\, 7)$ 로 나누는 방법이 있으므로 $4C_1\times_3C_3\times 2!+_4C_2\times_2C_2\times \frac{1}{2!}\times 2!=8+6=14(7!)$

8. 두 집합 $X = \{1, 2, 3, 4, 5\}$, $Y = \{2, 4, 6, 8\}$ 에 대하여 치역과 공역이 일치하는 X에서 Y로의 함수의 개수는?

① 120개 ② 180개 ③ 240개 ④ 300개 ⑤ 360개

해설

정의역의 원소 5개 중 2개는 같은 함숫값을 가진다. 집합 X의 원소 중 같은 함숫값을 갖는 2개를 택하는 방법의 수는 $5C_2=10$ 택한 2개의 원소를 하나로 생각하여 집합 X의 원소 4개를 집합 Y의 각 원소에 대응시키는 방법의 수는 4!=24따라서 구하는 함수의 개수는 $10\times 24=240(7)$

- 9. 6 명의 학생에게 쪽지시험을 보게 한 후 답안지를 서로 바꾸어서 채점을 하게 하였다. 6 명 모두 자신의 답안지를 가지지 않게 바꿀 수 있는 방법은 몇 가지인가?
 - ① 44 ② 60 ③ 108 ④ 126 ⑤ 265

해설

6 명의 답안지를 $A = \{1, 2, 3, 4, 5, 6\}$ 로 놓는다. i 가 가진 답안지를 f(i) (i = 1, 2, 3, 4, 5, 6) 로 놓으면 $(1 - f(1))(2 - f(2))(3 - f(3))(4 - f(4))(5 - f(5))(6 - f(6)) \neq 0$

인 일대일대응 $f: A \rightarrow A$ 의 개수를구하는 것이다.

 $A = \{1, 2, 3, \cdots, n\}$ 일 때,

 $A = \{1, 2, 3, \dots, n\}$ 를 떼, 위의 조건을 만족하는 함수 f 의 개수를 a_n 이라 하면 $a_1 =$

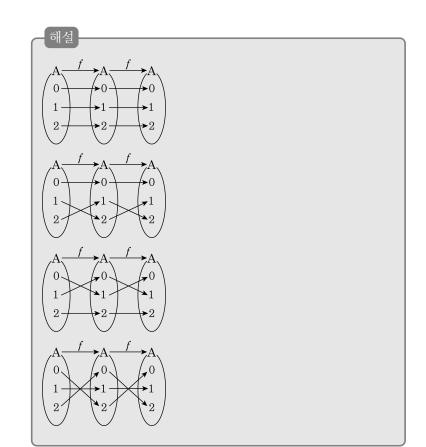
 $0, a_2 = 1 f(1) = 2 인 경우$ 다음 두 가지 경우를 생각할 수 있다.

(i) f(2) = 1 인 경우: 이때, f 의 개수는 $3,4,\cdots,n$ 은 모두 겹치지 않게 배열하는 방법 이므로 그 수는 a_{n-2} 이다.

(ii) f(2) ≠ 1 인 경우: f(2) 는 3,4,···,n의 값이 될 수 있고, 1 은 f(3), f(4),···, f(n)의 함수값이므로 1 은 2 로 바꾸어도 상관없다. 즉, 2,3,···,n은 모두 겹치지 않게 배열하는가지수이므로 그 수는 a_{n-1} 이다.
(i)(ii)에서 f(1) = 2 인 경우 f 의 가짓수는 a_{n-1} + a_{n-2} 이고.

 $f(1) = 3, 4, \dots, n$ 인 경우에도 마찬가지이므로 구하는 a_n 은 다음식을 만족한다.

구야는 a_n 은 나음식을 만족한다. $a_n = (n-1)(a_{n-1} + a_{n-2})$


따라서, $a_3 = 2(1+0) = 2$,

 $a_4 = 3(2+1) = 9,$

 $a_5 = 4(9+2) = 44,$ $a_6 = 5(44+9) = 265$ 10. 임의의 자연수를 3 으로 나누었을 때, 나머지의 집합 A 에서 A 로의 함수 f 중 합성함수 $f \circ f$ 가 항등함수가 되는 f 의 개수를 구하여라.

<u>개</u>

▷ 정답: 4개

함수 f 의 개수를 구하여라.

▶ 답: 개

➢ 정답 : 4개

해설

조건 (ii)에서 나타날 수 있는 경우는
$$f(0\cdot 1)=f(0)=f(0)\cdot f(1)$$
 ··· ⑤ $f(0\cdot 2)=f(0)=f(0)\cdot f(2)$ ··· ⑥ $f(1\cdot 2)=f(2)=f(1)\cdot f(2)$ ··· ⑥ ⑤, ⑥에서 $f(0)\left\{f(1)-f(2)\right\}=0$ 이고 조건 (i)로 부터 $f(0)=0$ 이고

 $f(2) \neq 0$ 이므로 f(1) = 1, f(2) = 2, 3, 4, 5 가 될 수 있으므로 함수의 개수는 4 개

 \bigcirc 에서 $f(2) \{f(1) - 1\} = 0$

12. 집합
$$A = \{1, 2, 3\}$$
 에서 A 로의 함수 f 중에서 $2x - f(x) \in A(x = 1, 2, 3)$ 이 성립하는 것의 개수는?

$$2x - f(x) \in A$$
 이번, $x = 1 \implies 2 - f(1) \in A$
 $\therefore f(1) = 1$
 $x = 2 \implies 4 - f(2) \in A$
 $\therefore f(2) = 1, f(2) = 2, f(2) = 3$

 $x = 3 \implies 6 - f(3) \in A$

f(3) = 3

따라서 주어진 조건을 만족하는 f 의 개수는 3 개

13. 집합 $A = \{1, 2, 3, 4, 5\}$ 에 대하여 다음 조건을 모두 만족시키는 A 에서 A 로의 함수 f의 개수는?

$$\bigcirc$$
 함수 f 는 일대일대응이다.

 $\bigcirc f(1) = 5$ 이다.

해설 조건 ⓒ에 의해
$$f(2) \le 2$$
이므로 $f(2)$ 를 정하는 방법의 수는 ${}_2C_1$ 조건 ⓒ, ⓒ에 의해 $f(3) \le 3$, $f(3) \ne f(2)$ 이므로 $f(3)$ 를 정하는 방법의 수는 ${}_2C_1$ 같은 방법으로 $f(4)$ 를 정하는 방법의 수도 ${}_2C_1$ 이고, $f(5)$ 를 정하는 방법의 수는 1 $\therefore {}_2C_1 \times {}_2C_1 \times {}_2C_1 = 8$