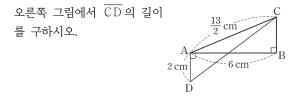
1. 다음 인에 알맞은 수를 써넣어라.


세 변의 길이가 5,12,13 인 삼각형은 $5^2 + 12^2 = 13^2$ 이므로 빗변의 길이가 ① 인 직각삼각형이다.

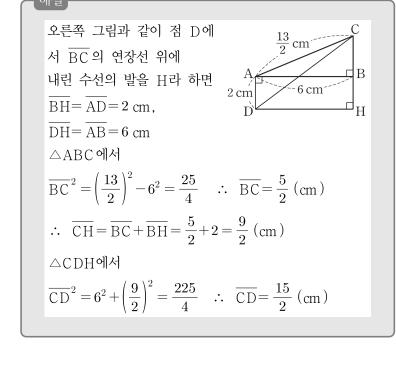
답:▷ 정답: 13

세 변의 길이가 각각 a,b,c 인 \triangle ABC 에서 $a^2+b^2=c^2$ 이면 이

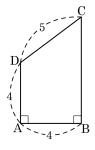
삼각형은 c 를 빗변의 길이로 하는 직각삼각형이다. 따라서 a=5,b=12,c=13 해당하므로 13 을 빗변의 길이로 하는 직각삼각형이다.


2. 다음 그림에서 x 의 값은?

피타고라스 정리에 따라 $5^2 + 12^2 = x^2$

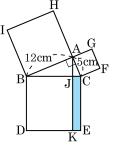

 $x^2 = 169$

x > 0 이므로 x = 13 이다.



▶ 답:

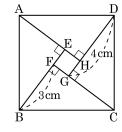
ightharpoonup 정답: $rac{15}{2}$



4. 다음 그림에서 \overline{BC} 의 길이는?

①7 ② 8 ③ 9 ④ 10 ⑤ 11

점 D를 지나면서 \overline{AB} 에 평행한 보조선을 긋고 \overline{BC} 와의 교점을 E라고 하자. ΔDEC 에 피타고라스 정리를 적용하면 $\overline{EC}=3$ 따라서 $\overline{BC}=4+3=7$ 이다. 다음 그림에서 AB = 12 cm, AC = 5 cm 일 때, □JKEC 의 넓이를 구하여라.


 ▷ 정답:
 25 cm²

 $\underline{\rm cm^2}$

답:

 $\Box \mathrm{JKEC} = \Box \mathrm{ACFG} = 5 \times 5 = 25 (\,\mathrm{cm}^2)$

 다음 그림에서 BF = 3 cm, DG = 4 cm 이고, 삼각형 4 개는 모두 합동인 삼각형이다. (가)와 (나)에 알맞은 것을 차례대로 쓴 것은?

BC 의 길이는 (나) 이다.

□EFGH 의 모<u>양은 [(가)</u>]이고,

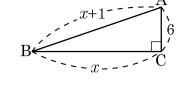
② (가): 직사각형, (나): 6 cm ③(가): 정사각형, (나): 5 cm

① (가) : 직사각형, (나) : 5 cm

③ (가): 정사각형, (나): 5 cm
 ④ (가): 정사각형, (나): 8 cm
 ⑤ (가): 정사각형, (나): 9 cm

해설

 $\square \mathrm{EFGH}$ 의 모양은 정사각형이고, $\overline{\mathrm{BC}}$ 의 길이는 $5\,\mathrm{cm}$ 이다.


7. 세 변의 길이가 (x+3) cm , (x-1) cm , (x-5) cm 인 삼각형이 직각삼각형이 되는 x 의 값은?

① 17 ② 18 ③ 19 ④ 20 ⑤ 21

 $(x+3)^2 = (x-1)^2 + (x-5)^2$ $x^2 + 6x + 9 = x^2 - 2x + 1 + x^2 - 10x + 25$ $x^2 - 18x + 17 = 0$, (x-1)(x-17) = 0따라서 x = 1 또는 x = 17x > 5이므로 x = 17

x > 0 |== x 11

8. \triangle ABC 에서 적절한 x 값을 구하면?

① 16 ② 16.5 ③ 17

417.5

⑤ 18

해설

$$(x+1)^{2} = x^{2} + 6^{2}$$
$$x^{2} + 2x + 1 = x^{2} + 36$$
$$2x = 35$$

 $\therefore x = 17.5$

- 9. 세 변의 길이가 $6 \, \mathrm{cm}, \, 5 \, \mathrm{cm}, \, 10 \, \mathrm{cm}$ 인 삼각형은 어떤 삼각형인가?
 - ① 직각삼각형 ② ALEHAN
- ② 직각이등변삼각형
- ③ 이등변삼각형 ⑤ 둔각삼각형
- ④ 예각삼각형

 $6^2 + 5^2 < 10^2$

- 10. 가장 짧은 변의 길이가 x 이고, 나머지 두 변의 길이가 각각 15, 17 인 삼각형이 예각삼각형이기 위한 x 의 값의 범위는?
 - ① 8 < x < 15 ② 8 < x < 17 ③ 9 < x < 15

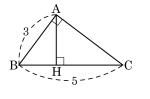
i) x + 15 > 17, x > 2ii) $x^2 + 15^2 > 17^2, x > 8$

iii) x < 15∴ 8 < *x* < 15

해설 ___

11. 세 변의 길이가 각각 다음과 같은 삼각형은 어떤 삼각형인가?

- ① ①직각삼각형, ②예각삼각형, ⑤둔각삼각형
- ② □직각삼각형, ○둔각삼각형, ○예각삼각형
- ③ つ예각삼각형, ©직각삼각형, ©둔각삼각형
- ④ ⑤둔각삼각형, ⑥예각삼각형, ⑥직각삼각형 ⑤ ⑤둔각삼각형, ⑥직각삼각형, ⑥예각삼각형


\bigcirc $3^2 + 4^2 = 5^2$ \therefore 직각삼각형

해설

○ 3² + 5² < 7² : 둔각삼각형
 ○ 4² + 5² > 6² : 예각삼각형

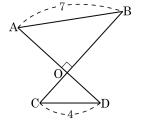
| ⓒ 4* + 5* > 6* ∴ 에갹삼갹 |

12. 다음 그림의 직각삼각형 ABC 의 점 A 에서 빗변에 내린 수선의 발을 ${
m H}$ 라 할 때, ${
m \overline{AH}}$ 의 길이는?

① 1.2 ② 1.6 ③ 2

4 2.4

⑤ 2.8


 $\overline{\mathrm{AC}}=4$ 이므로

해설

 $\overline{\mathrm{AH}} \times 5 = 3 \times 4$

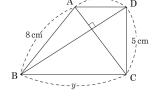
 $\therefore \overline{\mathrm{AH}} = 2.4$

13. 다음 그림과 같이 $\overline{AD} \perp \overline{BC}$ 이고, $\overline{AB} = 7$, $\overline{CD} = 4$ 일 때, $\overline{OA}^2 + \overline{OB}^2 + \overline{OC}^2 + \overline{OD}^2$ 의 값을 구하여라.

답:

➢ 정답: 65

$$\overline{OA}^{2} + \overline{OB}^{2} + \overline{OC}^{2} + \overline{OD}^{2}$$


$$= (\overline{OA}^{2} + \overline{OB}^{2}) + (\overline{OC}^{2} + \overline{OD}^{2})$$

$$= \overline{AB}^{2} + \overline{CD}^{2}$$

$$= 7^{2} + 4^{2}$$

$$= 65$$

14. 그림과 같이 $\Box ABCD$ 가 주어졌을 때, $x^2 + y^2$ 의 값을 구하여라.

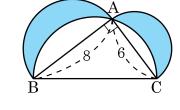
답:

➢ 정답: 89

해설

 $x^2 + y^2 = 8^2 + 5^2 = 89$

15. 다음 그림과 같이 직각삼각형 ABC 의 세 변을 각각 지름으로 하는 반원의 넓이를 S_1 , S_2 , S_3 라 하자. $S_1=10\pi\mathrm{cm}^2$, $S_2=15\pi\mathrm{cm}^2$ 일 때, S_3 의 값을 구하여라.

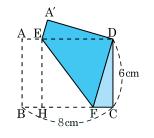

 $\underline{\mathrm{cm}^2}$

<mark>▷ 정답:</mark> 25π<u>cm²</u>

▶ 답:

 $S_1 + S_2 = S_3$ 이므로 $S_3 = 25\pi (\text{cm}^2)$

16. 다음 그림은 직각삼각형 ABC 의 세 변을 각각 지름으로 하는 세 개의 반원을 그린 것이다. $\overline{AB}=8,\overline{AC}=6$ 일 때, 색칠한 부분의 넓이를 구하여라.


▶ 답: ▷ 정답: 24

해설

(색칠한 부분의 넓이) = △ABC

 $= \frac{1}{2} \times 8 \times 6$ = 24

- 17. 다음 그림은 직사각형 ABCD = 점 B 가 점 D 에 오도록 접었다. $\overline{\mathrm{CD}} = 6\,\mathrm{cm},\;\overline{\mathrm{BC}} =$
 - $8\,\mathrm{cm}$, 점 H 는 점 E 에서 $\overline{\mathrm{BC}}$ 에 내린 수선의 발일 때, 다음 중 옳지 <u>않은</u> 것은?

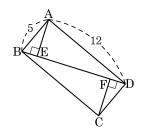
- ① $\overline{A}\overline{E} = \frac{7}{4} \text{ cm}$ ③ $\overline{EF} = \frac{17}{2} \text{ cm}$ ⑤ $\overline{HF} = \frac{9}{2} \text{ cm}$
- \bigcirc $\angle DEF = \angle EFH$

$\Delta \mathbf{A} \prime \mathrm{ED}$ 에서 $\overline{\mathbf{A}'\mathrm{E}}$ 를 x 로 잡으면 피타고라스 정리에 따라

 $x^{2} + 6^{2} = (8 - x)^{2}$, $x = \frac{7}{4} = \overline{A'E} = \overline{FC}$

$$\stackrel{\cdot}{\cdot}$$
 ED = 8 - $\frac{7}{4}$ = $\frac{25}{4}$ (cm) 이고, $\overline{\text{HF}}$ = $\overline{\text{CH}}$ - $\overline{\text{CF}}$ = $\frac{25}{4}$ - $\frac{7}{4}$ = $\frac{18}{4}$ = $\frac{9}{2}$ (cm) 2 소단F 에서 피타고라스 정리에 따라

$$\frac{18}{4} = \frac{9}{2} (\text{cm})$$


$$\frac{18}{4} = \frac{9}{2} \text{ (cm)}$$

$$\frac{1}{4} = \frac{1}{2}$$
 (cm)
 \triangle EHF 에서 피타고라스 정리에 따라

$$\Delta {
m EHF}$$
 에서 피타고라스 정리에 따라 $\overline{{
m EF}}^2=6^2+\left(rac{9}{2}
ight)^2=rac{225}{4}$

$$\overline{\rm EF}$$
 는 변이므로 양수이다. 따라서 $\overline{\rm EF}=\frac{15}{2}({
m cm})$ 이다. $\overline{\rm 3}$ $\overline{\rm EF}\neq\frac{17}{2}{
m cm}$

18. 다음 그림과 같은 직사각형 ABCD 에서 점 A 와 점 C 가 대각선 BD에 이르는 거리의 합을 구하면?

- ① $\frac{118}{13}$ ② $\frac{119}{13}$

해설

 $\triangle ABD$ 에서 $\overline{BD}=13$

$$5 \times 12 = 13 \times \overline{AE}, \ \overline{AE} = \frac{60}{13}$$

따라서
$$\overline{AE} = \overline{CF}$$
 이므로
$$\overline{AE} + \overline{CF} = \frac{60}{13} + \frac{60}{13} = \frac{120}{13}$$
 이다.

19. 대각선의 길이가 15 인치인 LCD 모니터를 구입하였다. 모니터 화면의 가로, 세로의 비가 4:3일 때, 모니터의 가로와 세로의 길이를 더하여라.

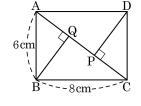
<u>인치</u>

 ▷ 정답:
 21인치

--가로의 길이를 4x 라고 하면 세로의 길이는 3x 이고

해설

답:


피타고라스 정리에 따라 $(4x)^2 + (3x)^2 = 15^2$ $25x^2 = 225$

 $\begin{vmatrix} x^2 = 9 \\ x > 0$ 이므로 x = 3

x > 0 이므도 x = 3 따라서 가로의 길이는 12 인치, 세로의 길이는 9 인치이므로

가로와 세로의 길이의 합은 21 인치이다.

 ${f 20}$. 다음 직사각형의 두 꼭짓점 ${f B},\,{f D}$ 에서 대각 선 AC 에 내린 수선의 발을 각각 $Q,\ P$ 라 할 때, $\overline{\mathrm{PQ}}$ 의 길이를 구하여라.

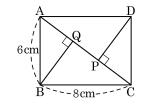
▷ 정답: 2.8 cm

ΔABC 는 직각삼각형이므로

▶ 답:

 $\overline{AC} = 10(cm)$ 이다.

 $\overline{AQ} = \overline{PC}$ 이고 $\triangle ABQ$ 와 $\triangle ABC$ 는 닮음이므로 $\overline{AB} : \overline{AC} = \overline{AQ} : \overline{AB}$ 에서


 $\underline{\mathrm{cm}}$

 $\overline{AB}^2 = \overline{AQ} \times \overline{AC}$ 이므로

 $\overline{\mathrm{AQ}} = \frac{36}{10} = 3.6 \mathrm{(\,cm)}$ 이다.

따라서 $\overline{PQ} = 10 - 3.6 - 3.6 = 2.8 (cm)$ 이다.

21. 다음 그림과 같이 직사각형 ABCD 에서 두 꼭짓점 B, D 에서 수선을 내렸을 때, △ABQ 의 넓이를 구하여라.

답:▷ 정답: 8.64 cm²

ΔABQ 의 넓이를 구하기 위해서 $\overline{AQ},\;\overline{BQ}$ 의 길이를 각각 구하

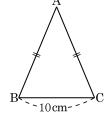
면, $\triangle ABC$ 가 직각삼각형이므로 $\overline{AC}=10(\mathrm{cm})$ 이다.

 $\underline{\mathrm{cm}^2}$

 $\triangle ABQ$ 와 $\triangle ABC$ 는 닮음이므로 $\overline{AB}:\overline{AC}=\overline{AQ}:\overline{AB}$ 에서

 $\overline{AB}^2 = \overline{AQ} \times \overline{AC}$ 이므로

 $\overline{AQ} = \frac{36}{10} = 3.6 \text{ (cm)}$

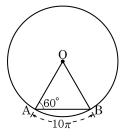

 $\overline{BQ} \times \overline{AC} = \overline{AB} \times \overline{BC}$

 $\overline{\mathrm{BQ}} = \frac{48}{10} = 4.8 (\,\mathrm{cm})$ 따라서 $\Delta\mathrm{ABQ}$ 의 넓이는

 $\frac{1}{2} \times 4.8 \times 3.6 = 8.64 (\text{ cm}^2)$ 이다.

22. 다음 그림과 같이 넓이가 $60 \, \mathrm{cm}^2$ 인 이등변삼각 형 ABC 에서 $\overline{\mathrm{BC}} = 10 \, \mathrm{cm}$ 일 때, $\overline{\mathrm{AB}}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$


 > 정답 :
 13 cm

높이 = h 라 하면, $\frac{1}{2} \times h \times 10 = 60$

▶ 답:

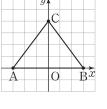
 $\therefore h = 12 \text{ cm},$ $(\overline{AB})^2 = 5^2 + 12^2, \overline{AB} = 13 \text{ cm}$

23. 다음 그림과 같이 $\angle OAB = 60^\circ$ 인 부채꼴 OAB 에서 $\widehat{AB} = 10\pi$ 일 때, \overline{AB} 의 길이를 구하여라.

답:▷ 정답: 30

ΔOAB 는 이등변삼각형이므로

 $\angle AOB = 60^{\circ} \bigcirc \boxed{\exists},$


 $2\pi \times \overline{OA} \times \frac{60^{\circ}}{360^{\circ}} = 10\pi, \ \overline{OA} = 30$

점 O 에서 \overline{AB} 에 내린 수선의 발을 H 라하면

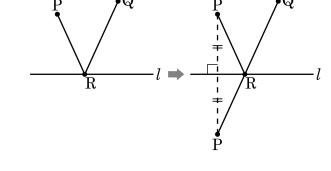
 $\overline{OA} : \overline{AH} = 2 : 1$ $\overline{AH} = 15$

 $\therefore \overline{AB} = 2\overline{AH} = 30$

오른쪽 그림과 같이 좌표평면 위에 $\overline{AC} = \overline{BC}$ 인 이등변삼각 형 ABC가 있다. A(-3, 0), B(3, 0), C(0, 4)일 때, △ABC 의 둘레의 길이를 구하시오.

➢ 정답: 16

▶ 답:


해설

 \triangle AOC 에서 $\overline{AC}^2 = 3^2 + 4^2 = 25$ $\therefore \overline{AC} = \overline{BC} = 5$ $\therefore (\triangle ABC \ 9 \ \Xi 레 \ 2) = \overline{AC} + \overline{AB} + \overline{BC}$

 $\overline{AO} = \overline{BO} = 3$, $\overline{CO} = 4$ 이므로

= 5 + 6 + 5 = 16

- ${f 25}$. 다음 그림과 같이 점 P, Q가 있을 때, $\overline{
 m PR}+\overline{
 m RQ}$ 의 값이 최소가 되도록 직선 l위에 점 R를 잡는 과정이다. 빈칸에 알맞은 것은?
 - 직선 \square 에 대한 점 P의 대칭점 P' 을 잡고 선분 \square 가 직선 l과 만나는 점을 ____로 잡는다.

- $\textcircled{4} \ \ Q, \ PQ, \ Q \\ \textcircled{5} \ \ Q, \ P'Q, \ R$
- ① l, PQ, Q ② l, PQ, R
- (3) *l*, P'Q, R

l에 대한 점 P의 대칭점 P'을 잡고 선분 P'Q가 직선 l과 만나는

점을 R로 잡는다.