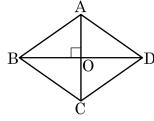
다음은 평행사변형의 성질을 나타낸 것이다. 인에 알맞은 말은? 두 쌍의 의 길이는 각각 같다. ① 대각선 ③ 대각 4) リ변 해설

평행사변형의 성질: ① 두 쌍의 대변의 길이가 각각 같다.

② 두 쌍의 대각의 크기가 각각 같다. ③ 두 대각선은 서로 다른 것을 이등분한다. 모두 고르면?



다음 그림과 같은 마름모 ABCD 가 정사각형이 되기 위한 조건을

①
$$\angle ABO = \angle CBO$$

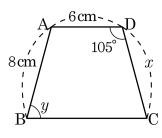
$$\bigcirc \overline{BO} = \overline{DO}$$

$$\overline{\text{AC}} = \overline{\text{BD}}$$

2.

해설

── 정사각형은 네 변의 길이가 같고 네 각이 90°로 모두 같아야 한다. **3.** 다음 그림에서 □ABCD 가 등변사다리꼴일 때, *x*, *y* 의 값을 각각 구하여라.



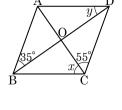
$$\triangleright$$
 정답: $x = 8 \underline{\text{cm}}$

해설
$$x = \overline{AB} = 8 \text{ cm}$$

$$\angle B = 180^{\circ} - 105^{\circ} = 75^{\circ}$$

$$\therefore \angle y = 75^{\circ}$$

4. 다음 그림과 같이 평행사변형 ABCD 에서 ∠ABD = 35°, ∠ACD = 55°일 때, ∠x - ∠y 의 값은?



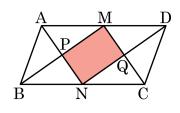
4 35°

 $\therefore \angle x - \angle y = 20^{\circ}$

$$\overline{AB}$$
 // \overline{DC} 이므로 $\angle OAB = \angle OCD = 55^\circ$ $\triangle ABO$ 에서 $\angle AOB = 180^\circ - (35^\circ + 55^\circ) = 90^\circ$ 평행사변형의 두 대각선이 서로 수직이므로 $\Box ABCD$ 는 마름모가 된다. $\angle x = 55^\circ, \angle y = 35^\circ$

③ 30°

5. 다음 그림의 사각형 ABCD 에서 평행사변형 ABCD 에서 $\overline{AD}=2\overline{AB}$ 이고, \overline{AD} 와 \overline{BC} 의 중점을 각각 M, N 이라 할 때, 색칠한 사각형은 어떤 사각형인지 구하여라.



 $\overline{\text{MN}}$ 을 연결하면 □ABNM 과 □MNCD 는 합동인 평행사변형 이 되므로 $\overline{\text{AP}} = \overline{\text{PN}} = \overline{\text{MQ}} = \overline{\text{QC}}$, $\overline{\text{BP}} = \overline{\text{PM}} = \overline{\text{NQ}} = \overline{\text{QD}}$ 따라서 두 쌍의 대변의 길이가 각각 같으므로 □PMQN 은 □ 이다.

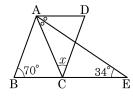
답:

▷ 정답 : 평행사변형

해설

 $\overline{\text{MN}}$ 을 연결하면 □ABNM 과 □MNCD 는 합동인 평행사변형이 되므로 $\overline{\text{AP}} = \overline{\text{PN}} = \overline{\text{MQ}} = \overline{\text{QC}}$, $\overline{\text{BP}} = \overline{\text{PM}} = \overline{\text{NQ}} = \overline{\text{QD}}$ 따라서 두 쌍의 대변의 길이가 각각 같으므로 □PMQN 은 평행 사변형이다.

6. 평행사변형 ABCD 에서 \overline{AC} 를 긋고 $\angle DAC$ 의 이등분선이 \overline{BC} 의 연장선과 만나는 점을 E 라 한다. $\angle ACD$ 의 크기를 구하여라.



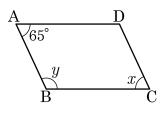
- 답:
- ➢ 정답: 42°

 $\angle DAE = \angle E = 34^{\circ}$

 $\angle CAD = 68^{\circ}, \angle B = \angle D = 70^{\circ}$

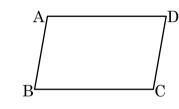
 $\angle ACD = 68^{\circ}$, $\angle ACD = 180^{\circ} - (68^{\circ} + 70^{\circ}) = 42^{\circ}$ 이다.

7. 다음 \square ABCD가 평행사변형이 된다고 할 때, x, y의 크기를 구하여라.



- ▶ 답:
- ► 답: <u>'</u>
- \triangleright 정답: ∠ $x = 65^{\circ}_{-}$
- **> 정답:** ∠y = 115<u>°</u>

8. 사각형 ABCD 에서 $\overline{AB}=5, \overline{BC}=8$ 일 때, 다음 중 사각형 ABCD 가 평행사변형이 되는 조건은?



② $\overline{AD} = 5$, $\overline{CD} = 8$

 $\overline{AC} = 8$, $\overline{BD} = 5$

① $\overline{AC} = 5$, $\overline{CD} = 13$

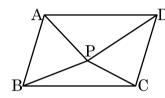
해설

- $\overline{\text{AD}} = 8, \ \overline{\text{CD}} = 5$

평행사변형은 두 쌍의 대변의 길이가 각각 같다.

따라서 $\overline{AB} = \overline{CD} = 5$, $\overline{BC} = \overline{AD} = 8$ 이다.

9. 다음 그림과 같이 평행사변형 ABCD 의 내부의 임의의 한 점 P 에 대하여 $\Delta PAD = 15 cm^2$, $\Delta PBC = 11 cm^2$, $\Delta PCD = 12 cm^2$ 일 때, ΔPAB 의 넓이를 구하여라.



 cm^2

▷ 정답: 14 cm²

답:

 $\triangle PAB + \triangle PCD = \triangle PAD + \triangle PBC = \frac{1}{2} \times \Box ABCD, \triangle PAB + 12 =$

 $15 + 11 = 26 (\text{cm}^2)$

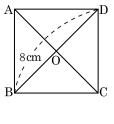
 $\therefore \triangle PAB = 14cm^2$

10. 다음 그림의 정사각형 ABCD의 대각선의 길이가 8 cm이다. 이때 □ABCD의 넓이는?

 $\bigcirc 8 \, \mathrm{cm}^2$

② $16 \, \text{cm}^2$

- $32 \,\mathrm{cm}^2$
 - $4 64 cm^2$



 $\odot 128 \, \text{cm}^2$

해설

 ΔAOD 는 직각삼각형이고, 한 변의 길이는 $4\,\mathrm{cm}$ 이다. 따라서 삼각형 $1\,\mathrm{TM}$ 의 넓이는 $\frac{1}{2}\times4\times4=8(\,\mathrm{cm}^2)$

2 ~ 4 ~ 4 = 0(cm 2) 기가전이 내보이

정사각형의 내부의 대각선으로 이루어진 삼각형은 모두 합동이 므로 $\square ABCD = 8 \times 4 = 32 \text{ (cm}^2\text{)}$

11. 다음 설명 중 옳은 것을 모두 고르면?

- ① 평행사변형은 사각형이다.
 - ② 사다리꼴은 평행사변형이다.
- ③ 정사각형은 마름모이다.
- ④ 직사각형은 정사각형이다.
- ⑤ 사다리꼴은 직사각형이다.

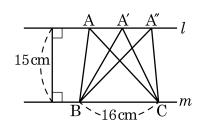
해설

- ② 평행사변형은 사다리꼴이다.
- ③ 정사각형은 마름모이고, 직사각형이다.
- ④ 정사각형은 마름모이고, 직사각형이다.
- ⑤ 직사각형은 사다리꼴이다.

12. 다음 중 두 대각선의 길이가 서로 같고, 서로 다른 것을 이등분하는 사각형을 모두 고르면? ① 등변사다리꼴 ② 평행사변형 ③ 마름모

④ 직사각형 ⑤ 정사각형

해설 직사각형은 두 대각선의 길이가 같고 서로 다른 것을 이등분한다. 정사각형은 직사각형의 성질을 가지므로 위의 성질도 가진다. 13. 다음 그림에서 l/m 이다. l과 m 사이의 거리는 15cm, $\overline{BC}=16$ cm 일 때, ΔABC , $\Delta A'BC$, $\Delta A''BC$ 의 넓이의 비는?



1:1:1

② 1:2:1

③ 1:2:3

4 2:1:2

⑤ 2:3:1

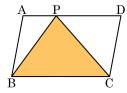
해설

세 변의 삼각형의 밑변, 높이의 길이가 같으므로 $\triangle ABC = \triangle A'BC = \triangle A''BC = \frac{1}{2} \times 16 \times 15$

 $= 120(\text{cm}^2)$

 $\therefore \triangle ABC : \triangle A'BC : \triangle A''BC = 1:1:1$

14. 다음 그림에서 평행사변형 ABCD 의 넓이가 $20\,\mathrm{cm^2}$ 일 때, $\overline{\mathrm{AD}}$ 위의 임의의 점 P 에 대하 여 $\Delta\mathrm{PBC}$ 의 넓이를 구하여라.



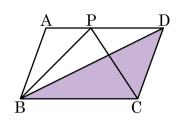
<u>cm</u>²

정답: 10 cm²

해설

평행사변형 ABCD 의 넓이가 $20\,\mathrm{cm}^2$ 이므로 Δ PBC 는 넓이는 평행사변형 ABCD 넓이의 절반인 $10\,\mathrm{cm}^2$ 이다.

15. 다음 그림과 같이 □ABCD가 평행사변형이고 ΔPBC = 14cm² 일 때, 어두운 부분의 넓이는?

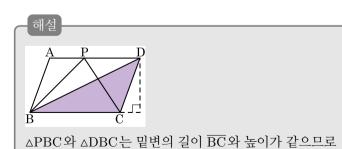


 $3 15 \text{cm}^2$

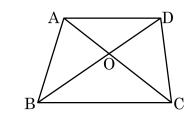
 \bigcirc 13cm²

- 214cm²
- $4 16 cm^2$ $5 17 cm^2$

 $\triangle DBC = \triangle PBC = 14(cm^2)$ 이다.



16. 다음 그림의 □ABCD 는 AD//BC 인 사다리꼴이다. 두 대각선의 교점을 O 라 할 때, △ABC = 50cm², △DOC = 15cm² 이다. 이 때, △OBC 의 넓이는?



$$\bigcirc$$
 25cm²

$$235 \text{cm}^2$$
 65cm^2

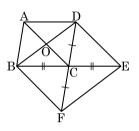
 345cm^2

$$455 \text{cm}^2$$

AARC - ADRC OLD AARO

$$\triangle ABC = \triangle DBC$$
 이므로 $\triangle ABO = \triangle DOC$
 $\therefore \triangle OBC = 50 - 15 = 35(cm^2)$

17. 다음 그림과 같이 평행사변형 ABCD의 두 변 BC, DC를 연장하여 BC = CE, DC = CF가 되게 점 E, F를 잡을 때, □BFED의 넓이 의 값을 구하여라.



▶ 답:

▷ 정답: 2

해설

□ABCD 와 □BFED 는 모두 평행사변형이고, 대각선의 중점을 연결해서 삼각형을 나누었으므로 다음 삼각형들의 넓이는 같다.

 $\triangle ABD = \triangle CBD = \triangle CBF = \triangle CFE = \triangle CED$ 이므로

 $\Box ABCD = 2\triangle ABD,$ $\Box BFED = 4\triangle ABD$

$$\therefore \frac{\Box BFED}{\Box ABCD} = \frac{4\triangle ABD}{2\triangle ABD} = 2$$

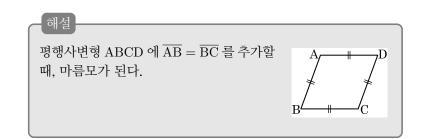
18. 평행사변형 ABCD 에 다음 조건을 추가할 때, 직사각형이 되지 <u>않는</u> 것은?

①
$$\angle A = \angle B$$

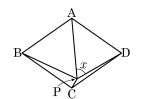
④ $\overline{AB} \perp \overline{BC}$

$$\bigcirc$$
 $\overline{AC} = \overline{BD}$

$$\bigcirc$$
 $\angle A = 90^{\circ}$

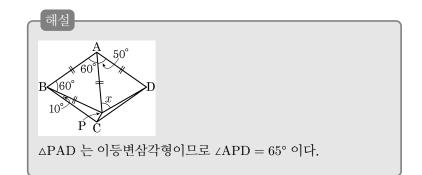


19. □ABCD 는 마름모이고 △ABP 는 정삼각형 이다. ∠ABC = 70° 일 때, ∠APD = ()° 이다. () 안에 알맞은 수는?



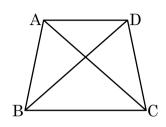
① 65 ② 60

4 50 **5** 45



3 55

20. 다음 그림처럼 사각형 ABCD가 $\overline{\rm AD}$ $/\!/ \,\overline{\rm BC}$ 인 등변사다리꼴일 때, 다음 중 옳은 것은?



 \bigcirc $\angle ABC = 2\angle ABD$

$$\bigcirc$$
 2 × $\overline{AD} = \overline{BC}$

$$\bigcirc$$
 $\triangle ABC \equiv \triangle DCB$

해설

② △ABC ≡ △DCB이므로 ∠BAC = ∠CDB

(a)
$$\overline{AB} = \overline{CD}$$
이고, \overline{BC} 는 공통, $\angle B = \angle C$ 이므로 $\triangle ABC \equiv \triangle DCB$ 이다.