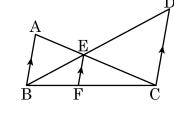

1. 다음 그림에서 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 일 때, x 의 값은?

① $\frac{10}{7}$ ② $\frac{5}{3}$ ③ 2 ④ $\frac{5}{2}$

 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 이므로 $\triangle\mathrm{ADP} \odot \triangle\mathrm{ABQ}$

 $3 : 5 = \overline{AP} : \overline{AQ} \cdots \bigcirc$ $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 이므로 $\triangle\mathrm{APE} \odot \triangle\mathrm{AQC}$

 $\overline{AP}: \overline{AQ} = 2 : x \cdots \bigcirc$

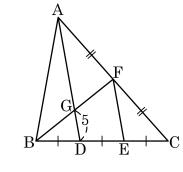

 \bigcirc , 으에서 3:5=2:x3x = 10

 $\therefore \ x = \frac{10}{3}$

- 다음 그림과 같이 ΔABC 에서 $\overline{DE}//\overline{BC}$ 일 때, 다음 중 옳지 <u>않은</u> **2**. 것은?
 - -12cm---
 - ① $\triangle ABC \hookrightarrow \triangle ADE$
- ② $\overline{BC} : \overline{DE} = 3 : 2$ $\overline{\text{DE}} = 6\,\mathrm{cm}$
- $\ \, \overline{\mathrm{CE}}=3\,\mathrm{cm}$

④ $\triangle ABC$ \hookrightarrow $\triangle ADE$ 이므로 $\overline{AD}: \overline{AB} = \overline{DE}: \overline{BC}$ 이다. 따라서 $4:6=\overline{DE}:12$, $\overline{DE}=8\,\mathrm{cm}$ 이다.

3. 다음 그림에서 \overline{AB} $/\!/ \, \overline{EF}$ $/\!/ \, \overline{DC}$ 이고 \overline{AB} : $\overline{DC}=2:3$ 일 때, $\overline{EF}:\overline{CD}$ 는?



① 5:6 ② 2:3 ③ 2:5 ④ 5:2 ⑤ 3:2

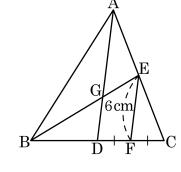
해설

 $\overline{BE}:\overline{DE}=2:3$ 이므로 $\overline{BE}:\overline{BD}=2:5$ 이다. 따라서 $\overline{EF}:\overline{CD}=2:5$ 이다.

4. 다음 그림의 ΔABC 에서 점 F 는 \overline{AC} 의 중점이고, 점 D, E 는 \overline{BC} 를 삼등분하는 점이다. $\overline{\mathrm{GD}}=5$ 일 때, $\overline{\mathrm{AG}}$ 의 길이는?

① 10 ② 14

315


4 18

⑤ 20

삼각형의 중점연결정리에 의해 $\overline{\mathrm{FE}} = 2 imes \overline{\mathrm{GD}} = 10$, $\overline{\mathrm{AD}} =$

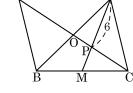
 $2 imes \overline{\mathrm{FE}} = 20$ 이므로 $\therefore \overline{\mathrm{AG}} = \overline{\mathrm{AD}} - \overline{\mathrm{GD}} = 20 - 5 = 15$ 이다.

다음 그림의 $\triangle ABC$ 에서 점 G는 $\triangle ABC$ 의 무게중심이고 점 E는 \overline{DC} 의 중점이다. $\overline{EF}=6\mathrm{cm}$ 일 때, \overline{GD} 의 길이는? **5.**

① 1cm

 \bigcirc 2cm

 \Im 3cm

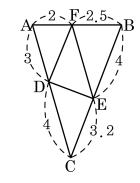

4cm

 \bigcirc 5cm

 $\overline{\text{CF}} = \overline{\text{DF}}$, $\overline{\text{CE}} = \overline{\text{AE}}$ 이므로 $\overline{\text{AD}} = 2\overline{\text{FE}} = 2 \times 6 = 12 \, (\text{cm})$ 점 G는 $\triangle \text{ABC}$ 의 무게중심이므로 $\overline{\text{AG}} : \overline{\text{GD}} = 2 : 1$ $\therefore \overline{\mathrm{GD}} = \frac{1}{3} \overline{\mathrm{AD}} = \frac{1}{3} \times 12 = 4 \, (\mathrm{cm})$

- 6. 다음 그림과 같은 평행사변형 ABCD 에서 점M 은 BC 의 중점이다. DP = 6 일 때, DM 의 길이를 구하면?
 - ① 3 ② 6
 - (3)

평행사변형의 두 대각선은 서로 다른 것을 이등분하므로 $\overline{\mathrm{AO}}$ =


해설

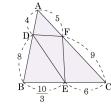
 $\overline{\text{CO}}, \overline{\text{BO}} = \overline{\text{DO}}$ ΔDBC 에서 $\overline{\text{CO}}, \overline{\text{DM}}$ 은 중선이므로 점 P 는 무게중심이다. $\therefore \overline{\text{DP}}: \overline{\text{PM}} = 2:1$,

 $\overline{\mathrm{DP}}:\overline{\mathrm{PM}}=6:3=2:1\;,$ 그러므로 $\overline{\mathrm{DM}}=9$

그러므로 DM = 9

7. 다음 그림의 $\overline{\rm DE},\;\overline{\rm DF},\;\overline{\rm EF}\;$ 중에서 $\triangle {\rm ABC}$ 의 변과 평행한 선분은?

① EF

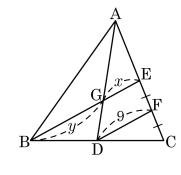

 \bigcirc $\overline{\mathrm{DF}}$ 4 $\overline{\text{DE}}$, $\overline{\text{EF}}$ 5 $\overline{\text{DE}}$

 $\Im \overline{\mathrm{DF}}, \overline{\mathrm{EF}}$

 $\overline{\mathrm{BF}}:\overline{\mathrm{FA}}=\overline{\mathrm{BE}}:\overline{\mathrm{EC}}$ 라면, $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{EF}}$ 이다.

2.5:2=4:3.2 이므로 $\overline{\mathrm{AC}}$ $/\!/\overline{\mathrm{EF}}$ 이다.

8. 다음 그림에서 $\overline{
m DE}$, $\overline{
m EF}$, $\overline{
m FD}$ 중에서 ${
m \triangle ABC}$ 의 변에 평행한 선분의 길이는?



- ① $\frac{52}{7}$ ② $\frac{54}{7}$ ③ $\frac{57}{5}$ ④ $\frac{60}{5}$ ⑤ $\frac{63}{5}$

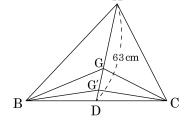
 $9:6=5:rac{10}{3}$ 이므로 $\overline{
m FE}\,/\!/\,\overline{
m AB}$

 $\overline{\text{CF}} : \overline{\text{CA}} = \overline{\text{FE}} : \overline{\text{AB}} , 9 : 14 = \overline{\text{FE}} : 12$ $14\overline{\text{FE}} = 108$ $\therefore \overline{\text{FE}} = \frac{54}{7}$

9. 다음 그림의 $\triangle ABC$ 에서 점 G는 $\triangle ABC$ 의 무게중심일 때, y-x의 값을 구하면?

① 4 ② 5

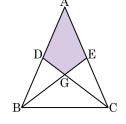
4 8


⑤ 10

 $\triangle AGE$ \bigcirc $\triangle ADF(AA$ 닮음) 이고 닮음비가 2:3이므로

 $3:2=9:x, \quad x=6$ G는 $\triangle ABC$ 의 무게중심이므로 \overline{BG} : $\overline{GE}=2$: 1 따라서 2:1=y:6, y=12

 $\therefore y - x = 6$


10. 다음 그림에서 $\overline{\mathrm{AD}}$ 는 $\Delta\mathrm{ABC}$ 의 중 선이고, 두 점 G, G'은 각각 \triangle ABC, △GBC의 무게중심이다. $\overline{\mathrm{AD}}=63\,\mathrm{cm}$ 일 때, $\overline{\mathrm{GG'}}$ 의 길이를 구하여라.

답: ▷ 정답: 14 cm

점 G는 \triangle ABC의 무게중심이므로 $\overline{\text{GD}} = \frac{1}{3}\overline{\text{AD}} = \frac{1}{3} \times 63 = 21 \text{ (cm)}$ 점 G'는 \triangle GBC의 무게중심이므로 $\overline{\text{G'G}} = \frac{2}{3}\overline{\text{GD}} = \frac{2}{3} \times 21 = 14 \text{ (cm)}$

11. 다음 그림에서 BE, CD는 △ABC의 중선이다. △GCE = 16 cm² 일 때, □ADGE의 넓이를 구하여라.

 ▶ 정답:
 32 cm²

 $\underline{\mathrm{cm}^2}$

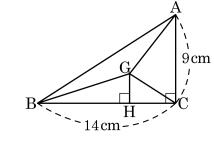
▶ 답:

해설

 $\Box ADGE = 2 \triangle GCE = 2 \times 16 = 32 (\,\mathrm{cm}^2)$

12. 다음 그림에서 $\overline{\rm DE}//\overline{\rm BC}$, 점 G는 $\triangle \rm ABC$ 의 무게중심이고, $\triangle \rm ABC=36cm^2$ 일 때, $\triangle \rm DFG$ 의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$


▷ 정답: 4 cm²

▶ 답:

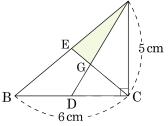
점 G가 \triangle ABC의 무게중심이고, $\triangle ABC = 36\,\mathrm{cm^2}\,$ 이므로 $\triangle ABF = 18\,\mathrm{cm^2}\,$ 이다. $\overline{AD}:\overline{BD}=2:1$ 이므로

$$\triangle ADF = \frac{2}{3} \triangle ABF = \frac{2}{3} \times 18 = 12 \circ] \overline{\mathcal{I}},$$
$$\triangle DFG = \frac{1}{3} \triangle ADF = \frac{1}{3} \times 12 = 4 (cm^2) \circ] \text{다}.$$

13. 다음 그림에서 점 G 는 직각삼각형 ABC 의 무게중심이다. 점 G 에서 \overline{BC} 에 내린 수선의 발을 H 라 할 때, \overline{GH} 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

정답: 3 cm


▶ 답:

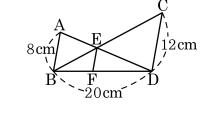
$$\triangle GBC = \frac{1}{3} \triangle ABC$$

$$= \frac{1}{3} \times \frac{1}{2} \times 14 \times 9 = 21(\text{cm}^2)$$

$$\therefore \overline{GH} = 21 \times 2 \div 14 = 3(\text{cm})$$

 14. 다음 그림과 같이 ∠C = 90°인 직각 삼각형 ABC에서 점 G는 ΔABC의 무게중심이다. BC = 6 cm, AC = 5 cm 일 때, ΔAEG의 넓이를 구하여 라.

답:
 > 정답: 5 cm²


중선 CE에 의하여

 $\triangle ACE = \triangle BCE = \frac{1}{2} \triangle ABC = \frac{1}{2} \times 6 \times 5 = 15 \text{ (cm}^2\text{)}$

 $\overline{\text{CE}}$ 는 무게중심 G에 의하여 $\overline{\text{CG}}$: $\overline{\text{GE}}=2$: 1로 나누어지므로 ΔAEG : $\Delta \text{AGC}=1$: 2 $\Delta \text{AEG}=\frac{1}{3}\Delta \text{ACE}=\frac{1}{3}\times 15=5$

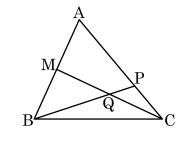
 $\therefore \Delta AEG = 5(cm^2)$

15. 다음 그림에서 \overline{AB} // \overline{EF} // \overline{CD} 일 때, \overline{BF} 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

 달:

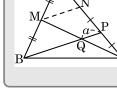
 ▷ 정답:
 8 cm

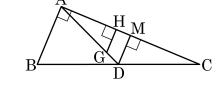

AE : ED = 2 : 3 이므로

 $\overline{BF} : \overline{FD} = 2 : 3$ $\overline{BF} : \overline{BD} = 2 : 5$

 $\overline{BF}: DD = 2:5$

 $\overline{\mathrm{BF}} = 8\mathrm{cm}$


16. 다음 그림에서 점 M 은 \overline{AB} 의 중점이고 $\overline{AP}:\overline{PC}=2:1$ 일 때, $\overline{PQ}:\overline{PB}$ 는?

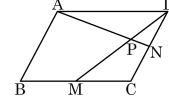

① 1:3 ② 1:4 ③ 2:3 ④ 2:5 ⑤ 3:5

| AP 의 중점을 N 이라하고 PQ = a 하면, MN = 2a 이고, BP = 4a 이므로, | PQ : PB = a : 4a = 1 : 4 이다. | A

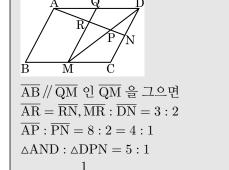
Å...

 ${f 17}$. 다음 그림과 같이 ${f \overline{AB}}=10,\ {f \overline{BC}}=26,\ {f \overline{AC}}=24$ 인 직각삼각형 ABC 의 무게중심 G 에서 변 AC 에 내린 수선의 발을 H, 변 AC 의 중점을 M 이라 할 때, 선분 HM 의 길이를 구하여라.

▶ 답:


▷ 정답: 4

중점연결 정리에 의해 △CAB ∽ △CMD 이고, 닮음비는 2 : 1


이므로 $\overline{\mathrm{AM}} = \frac{1}{2} \times \overline{\mathrm{AC}} = 12$ 또 $\overline{
m GH}\,/\!/\,\overline{
m DM}$ 이므로 이고, 닮음비는 무게중심의 성질에 의해

 $\therefore \overline{HM} = \frac{1}{3}\overline{AM} = 4$

- **18.** 다음 평행사변형 ABCD 에서 점 M, N 은 각각 \overline{BC} , \overline{CD} 의 중점이다. $\Delta DPN = 25~{\rm cm}^2$ 일 때, □ABCD 의 넓이를 구하면?

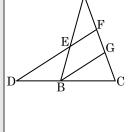
- $450\,\mathrm{cm}^2$
- $\bigcirc 350\,\mathrm{cm}^2$ $500\,\mathrm{cm}^2$
- $3400\,\mathrm{cm}^2$

 $\Delta DPN = \frac{1}{5} \triangle AND$ $= \frac{1}{5} \times \frac{1}{4} \square ABCD$ $= \frac{1}{20} \square ABCD$

 $\therefore \Box ABCD = 20 \triangle DPN = 20 \times 25 = 500 (\,\mathrm{cm}^2)$

19. 다음 그림에서 \overline{AE} : $\overline{EB} = 3$: 2, \overline{AF} : $\overline{FC} =$ 2:3 이다. $\overline{BC}=18\,\mathrm{cm}$ 일 때, \overline{BD} 의 길이 를 구하여라.

▶ 답:


해설

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $\frac{72}{5}$ $\underline{\mathrm{cm}}$

 $\overline{\mathrm{EF}} \ /\!/ \ \overline{\mathrm{BG}}$ 인 $\overline{\mathrm{BG}}$ 를 그으면 $\overline{\mathrm{AE}} : \overline{\mathrm{EB}} = \overline{\mathrm{AF}} : \overline{\mathrm{FG}} = 3 : 2 = 6 : 4$ $\overline{\rm AF}:\overline{\rm FC}=2:3=6:9$

즉 \overline{AF} : \overline{FG} : $\overline{GC} = 6:4:5$ $\overline{BC} : \overline{BD} = \overline{CG} : \overline{GF} = 5 : 4$ $18 : \overline{BD} = 5 : 4$ $\therefore \overline{DB} = \frac{72}{5} \text{ (cm)}$

20. 다음 그림과 같은 사다리꼴에서 \overline{BC} 의 길이를 구하여라.

F 12 cm - F

답:

▷ 정답: 16 cm

해설 △AED ∽ △EBF(AA 닮음) 이므로

 $\overline{AE} : \overline{EB} = 9 : 12 = 3 : 4$ $\overline{AD}//\overline{EF}//\overline{BC}$ 이므로

 $\overline{AE} : \overline{EB} = \overline{DF} : \overline{FC} = 3 : 4$

또한, △DEF♡△FBC(AA닮음)이므로

 EF: BC = DF: FC = 3:4

 따라서 12: BC = 3:4이므로

 $\overline{\mathrm{BC}} = 16 (\mathrm{\,cm})$