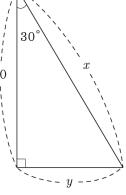

다음과 같은 직각삼각형을 참고하여
$$\overline{AB}$$
의 길 B이는?
① $12\sqrt{3}$ ② $11\sqrt{3}$ ③ $10\sqrt{3}$
④ $19\sqrt{3}$ ⑤ $18\sqrt{3}$

A -60°
A -12

$$\sin A = \frac{\overline{BC}}{\overline{AB}} = \frac{8}{17}$$

$$\cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{15}{17}$$

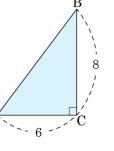
$$\therefore \sin A + \cos A = \frac{23}{17}$$


3. 다음 그림에서
$$x + y$$
의 값은?

①
$$8\sqrt{3}$$
 ② $9\sqrt{3}$

①
$$8\sqrt{3}$$
 ② $9\sqrt{3}$ ④ $11\sqrt{3}$ ⑤ $12\sqrt{3}$

$$310\sqrt{3}$$



$$x = \frac{10}{\cos 30^{\circ}} = \frac{20\sqrt{3}}{3}$$
$$y = 10 \times \tan 30^{\circ} = 10 \times \frac{1}{\sqrt{3}} = \frac{10\sqrt{3}}{3}$$

$$\therefore x + y = 10\sqrt{3}$$

4. 다음 직각삼각형에서
$$\sin A - \cos A$$
 의 값은?

①
$$-\frac{1}{3}$$
 ② $-\frac{1}{5}$ ③ $\frac{1}{5}$ ④ $\frac{1}{4}$ ③ $\frac{1}{3}$

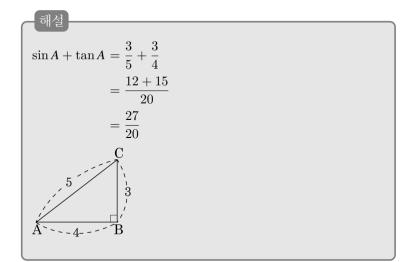
$$\overline{AB} = \sqrt{6^2 + 8^2} = 10$$

$$\sin A = \frac{\overline{BC}}{\overline{AB}} = \frac{8}{10} = \frac{4}{5} , \cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{6}{10} = \frac{3}{5}$$
따라서 $\sin A - \cos A = \frac{4}{5} - \frac{3}{5} = \frac{1}{5}$ 이다.

5. 다음 그림과 같은 직각삼각형 ABC 에서 $\sin A = \frac{2}{3}$ 이고, \overline{BC} 가 $4 \mathrm{cm}$ 일 때, \overline{AC} 의 길이는?

$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{\overline{AC}} = \frac{2}{3}$$
 이므로 $12 = 2 \times \overline{AC}$ 이다.
따라서 $\overline{AC} = 6$ cm 이다.

6. $\cos A = \frac{4}{5}$ 일 때, $\sin A + \tan A$ 의 값은? (단, $\angle A$ 는 예각이다.)


①
$$\frac{23}{20}$$

$$3\frac{12}{25}$$

$$4) \frac{17}{25}$$

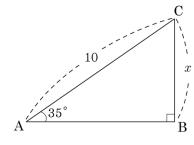
$$\bigcirc \frac{24}{25}$$

'. −2 sin 60° + √3 tan 45° × tan 60° 를 계산한 값은?

①
$$3 - \sqrt{3}$$
 ② $\frac{\sqrt{3}}{2} - 3$ ③ $3 - \frac{\sqrt{3}}{2}$ ④ 0 ⑤ 2

$$-2 \times \frac{\sqrt{3}}{2} + \sqrt{3} \times 1 \times \sqrt{3} = -\sqrt{3} + 3$$
이다.

8. 경사면의 기울어진 정도를 나타내는 경사도는 수평거리와 수직거리의 비율에 의해 결정된다. 다음 중 경사도와 가장 관계가 깊은 것은?


(2) cos A

 $4 \frac{1}{\sin A} \qquad \qquad 5 \frac{1}{\cos A}$

sin A

tan A

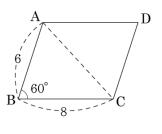
해설 수평거리와 수직거리의 비율은 직각삼각형에서 밑변과 높이의 비율로 생각할 수 있으므로 tan A 와 가장 관계가 깊다. 9. 다음 그림의 $\triangle ABC$ 에서 삼각비의 표를 보고 x 의 값을 구하면?

각도	sin	cos	tan
54°	0.8090	0.5878	1.3764
55°	0.8192	0.5736	1.4281
56°	0.8290	0.5592	1.4826

① 8.192

 $x = 10 \times \cos 55^{\circ} = 10 \times 0.5736 = 5.736$

10. 다음 그림과 같은 평행사변형 ABCD 에서 대각선AC 의 길이는?


① $3\sqrt{5}$

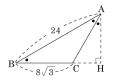
② $2\sqrt{7}$

(4) $3\sqrt{13}$

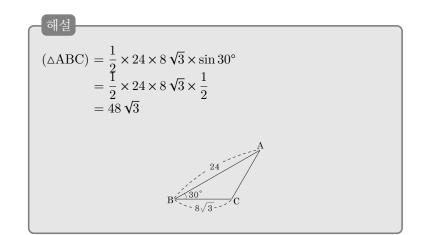
⑤ $4\sqrt{13}$

 $2\sqrt{13}$

점 A 에서 \overline{BC} 에 내린 수선의 발을 E 라고 하면


 $\overline{AE}=6\times\sin 60^\circ=3\sqrt{3}$, $\overline{BE}=6\times\cos 60^\circ=3$, $\overline{CE}=8-3=5$ 이다. 따라서 $\triangle AEC$ 에 피타고라스 정리를 적용하면 $\overline{AC}=$

해설


삼각형의 넓이
$$S = \frac{1}{2}ab\sin(180° - x)$$

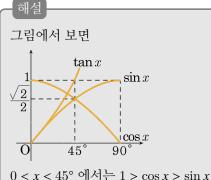
 $\frac{1}{2} \times 12 \times 18 \times \sin(180° - \angle C) = 54$,
 $\sin(180° - \angle C) = \frac{1}{2} = \sin 30°$
따라서 $\angle C = 150°$ 이다.

두 변의 길이가 a, b 이고 그 끼인 각 x 가 둔각이면,

12. 다음 그림과 같은 △ABC 의 넓이를 구하면?

① $48\sqrt{6}$ ② $48\sqrt{5}$ ③ $48\sqrt{3}$ ④ $48\sqrt{2}$ ⑤ 48

13. 다음 중 큰 값의 기호부터 나열된 것은?


보기 -

 \bigcirc cos 80° \bigcirc cos 0°

 \Box tan 0°

② (L), (E), (E), (T), (D)

④ ⑤, ⑥, ⑥, ②, ⑦

45° < x < 90° 에서는 1 > sin x > cos x

 $45^{\circ} < x < 90^{\circ}$ 에서 $\tan x > 1$

이상에서 볼 때 크기순으로 옳게 나열한 것은 ⑤이다.

14. 0° < x < 90° 일 때, $2\sin^2 x - 3\sin x + 1 = 0$ 을 만족시키는 x 의 값은?

①
$$0^{\circ}$$
 ② 15° ③ 30° ④ 45° ⑤ 60°

 $\sin x = \frac{1}{2}$, $\sin x = 1$ 즉, $x = 30^{\circ}$ 또는 $x = 90^{\circ}$ 이다.

 $0^{\circ} < x < 90^{\circ}$ 이므로 $x = 30^{\circ}$ 이다.

$$\sin x = A$$
 라고 하면 $2A^2 - 3A + 1 = 0$ $(2A - 1)(A - 1) = 0$ $A = \frac{1}{2}, 1$

15. 삼각비의 표를 보고, 표에서 가장 작은 값과 가장 큰 값의 차는 ?

각도	sin	cos	tan
10°	0.1736	0.9848	0.1763
20°	0.3420	0.9397	0.3640
35°	0.5736	0.8192	0.7002
45°	0.7071	0.7071	1.0000

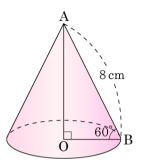
① 0.6225

② 0.8112

30.8264

@ 0.8437

(5) 1.1736


해설

주어진 표에서 가장 작은 값은 $\sin 10^\circ = 0.1736$, 가장 큰 값은 $\tan 45^\circ = 1$

 $\therefore \tan 45^{\circ} - \sin 10^{\circ} = 0.8264$

밑면의 반지름의 길이가 4cm 인 원뿔이 있 다. 이 원뿔의 높이는?

16. 다음 그림과 같이 모선의 길이가 8cm 이고

 $4\sqrt{3}$ cm

① 4 cm
④ 4
$$\sqrt{5}$$
 cm

②
$$4\sqrt{2}$$
 cm
③ $4\sqrt{6}$ cm

$$\overline{OA} = 8 \times \sin 60^{\circ} = 8 \times \frac{\sqrt{3}}{2} = 4\sqrt{3} \text{ (cm)}$$

17. 다음 그림과 같은 △ABC 에서 ∠B = 45°, ∠C = 60°, \overline{BC} = 60cm 일 때, \overline{AH} 의 길이를 구하면?

①
$$30(2-\sqrt{2})$$
 cm

$$30(2-\sqrt{3})$$
 cm

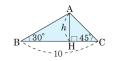
⑤
$$30(4-\sqrt{3})$$
 cm

$$4 30 (3 - \sqrt{3}) \text{ cm}$$

② $30(4-\sqrt{2})$ cm

해설
$$\overline{AH} = \frac{60}{\tan (90^{\circ} - 45^{\circ}) + \tan (90^{\circ} - 60^{\circ})}$$

$$= \frac{60}{\tan 45^{\circ} + \tan 30^{\circ}}$$


$$= \frac{60}{1 + \frac{\sqrt{3}}{3}}$$

$$= \frac{180}{3 + \sqrt{3}}$$

$$= \frac{180 (3 - \sqrt{3})}{9 - 3}$$

$$= 30(3 - \sqrt{3}) \text{ (cm)}$$

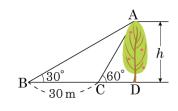
18. 다음 \triangle ABC 에서 높이 h는?

①
$$2(\sqrt{3}-1)$$

②
$$3(\sqrt{3}-1)$$
 ③ $4(\sqrt{3}-1)$

③
$$4(\sqrt{3}-1)$$

$$4 5(\sqrt{3}-1)$$


⑤
$$6(\sqrt{3}-1)$$

$$h = \frac{10}{\tan 60^{\circ} + \tan 45^{\circ}}$$

$$= \frac{10}{\sqrt{3} + 1}$$

$$= 5(\sqrt{3} - 1)$$

19. 다음 그림에서 나무의 높이 h는? (단, $\sqrt{3} = 1.7$ 로 계산한다.)

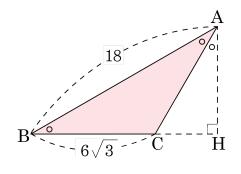
① 21.5m

② 22.5m

 $25.5 \mathrm{m}$

(3) 23.5m

4 24.5m


해설

$$\angle BAC = 30^{\circ}$$
 이므로
 $\overline{BC} = \overline{AC} = 30(m)$

$$\triangle$$
ACD 에서 $h = 30 \sin 60^{\circ}$

- $=30\times\frac{\sqrt{3}}{2}$
- $=15\sqrt{3}$ $= 15 \times 1.7 = 25.5 (m)$
- h = 25.5 m

20. 다음 그림과 같은 △ABC 의 넓이는?

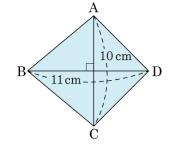
 $27\sqrt{3}$

①
$$3\sqrt{3}$$

 $4 81\sqrt{3}$

②
$$9\sqrt{3}$$

⑤
$$243\sqrt{3}$$


$$\angle A + \angle B = 90$$
° 에서 $\angle ABC = x$ 라 하면

3x = 90° ∴ x = 30° (△ABC 의 넓이)

$$= \frac{1}{2} \times 18 \times 6\sqrt{3} \times \sin 30^{\circ}$$

$$=\frac{1}{2} \times 18 \times 6\sqrt{3} \times \frac{1}{2} = 27\sqrt{3}$$

21. 다음 그림과 같은 도형의 넓이를 구하 면?

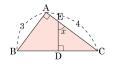
 $55\,\mathrm{cm}^2$

- ① $36 \, \text{cm}^2$ $4 \cdot 72 \, \text{cm}^2$
 - $5 108 \, \text{cm}^2$

 $248 \,\mathrm{cm}^2$

따라서 사각형의 넓이는

 $\frac{1}{2} \times 10 \times 11 \times \sin 90^{\circ} = 55 \text{(cm}^2)$ 이다.


22. 다음 그림과 같이 반지름의 길이가 6 인 원에 내접하는 정육각형의 넓이는?

①
$$9\sqrt{3}$$
 ② $18\sqrt{3}$ ③ $27\sqrt{3}$ ④ $45\sqrt{3}$ ⑤ $54\sqrt{3}$

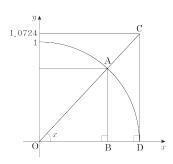
정육각형의 넓이 = 정삼각형의 넓이
$$\times 6$$
 이므로
따라서 $\left(\frac{1}{2} \times 6 \times 6 \times \sin 60^{\circ}\right) \times 6 = 54\sqrt{3}$ 이다.

23. 다음 그림에서 $\sin x$ 의 값은?

 $\frac{3}{4}$

$$\frac{4}{3}$$

$$\frac{5}{4}$$


해설

△EDC ∽ △BAC(AA 닮음) 이므로

 $\angle DEC = \angle ABC$ 이다. \overline{AC}

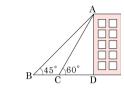
따라서 $\sin x = \frac{\overline{AC}}{\overline{BC}} = \frac{4}{5}$ 이다.

24. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 삼각비의 표를 이용하여 BD 의 길이를 구하면?

각도	사인(sin)	코사인(cos)	탄젠트(tan)
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6820	1.0724
48°	0.7431	0.6691	1.1106

$$\bigcirc$$
 -0.724

$$\bigcirc$$
 -0.6820


$$\tan x = \frac{\overline{\mathrm{CD}}}{\overline{\mathrm{OD}}} = \frac{\overline{\mathrm{CD}}}{1} = 1.0724 \, \mathrm{eV} \, x = 47 \, \mathrm{eV}$$

 $\overline{\mathrm{BD}} = \overline{\mathrm{OD}} - \overline{\mathrm{OB}}$

$$\overline{AO} = 1$$
, $\cos x = \frac{\overline{BO}}{\overline{AO}} = \frac{\overline{BO}}{1} = 0.6820$

$$\therefore \overline{BD} = 1 - \cos x = 1 - 0.6820 = 0.3180$$

25. 다음 그림과 같이 한 지점 B 에서 건물 옥상의 한 지점 A 를 올려다 본 각이 45°이고 다시 B 지점에서 건물쪽으로 10m 걸어간 지점 C 에서 A 지점을 올려다 본 각이 60°일 때, 건물의 높이 \overline{AD} 를 구하면? (단, 눈의 높이는 무시한다.)

①
$$5(2+\sqrt{2})$$
 m ② $5(2+\sqrt{3})$ m ③ $5(3+\sqrt{2})$ m ④ $5(3+\sqrt{3})$ m

