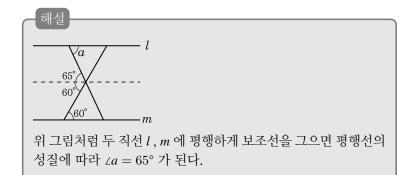
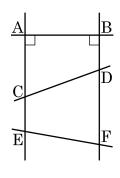


- ⊙ 두 점을 지나는 직선은 오직 하나뿐이다.
- 면과 면이 만나면 반드시 직선만 생긴다.
- © 삼각형, 원과 같이 한 평면 위에 있는 도형은 입체도형이라 한다.
- ② 점이 움직인 자리는 선이 되고, 선이 움직인 자리는 면이 된다.
- ◎ 선과 선 또는 선과 면이 만나면 점이 생긴다.
- 답:
- 답:
- ▷ 정답: □
- ▷ 정답: □
 - 해설
 - ① 면과 면이 만나면 오직 직선이 되는 것은 아니다.
 - ⓒ 삼각형, 원과 같이 한 평면 위에 있는 도형은 평면도형이라 한다.

2. 다음 보기 중 둔각을 모두 고르면? 보기


¬ 90°
 □ 87°
 □ 120°
 □ 30°

해설 둔각은 90°보다 크고 180°보다 작은 각이므로 ⓒ, ⊜이다. **3.** 다음 그림에서 l//m 일 때, $\angle a$ 의 크기를 구하여라.



▶ 답:

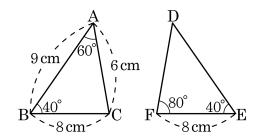
➢ 정답: 65_°

다음 직선들이 있을 때, ÁE와 BF의 위치관계는?

① 한 점에서 만난다.

② 일치한다.

평행하다.


해설

④ 수직으로 만난다.

⑤ 꼬인 위치에 있다.

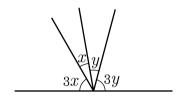
동위각의 크기가 같으므로 ★ 와 BF의 위치관계는 평행하다.

5. 다음 두 삼각형이 합동일 때, $\angle D$ 의 크기는?

① 40°

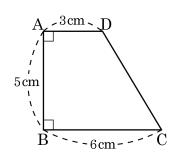
②60°

③ 80°


④ 20°

⑤ 50°

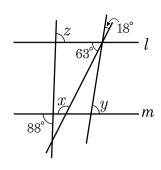
해설


두 삼각형이 합동이므로 각 ∠D의 크기는 60°이다.

6. 다음 그림에서 $\angle x + \angle y$ 의 값을 구하여라.

$$4(x+y) = 180^{\circ}$$
 이므로 $\angle x + \angle y = 45^{\circ}$ 이다.

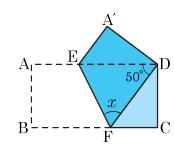
7. 다음 그림과 같은 사다리꼴 ABCD 에서 점 D 와 \overline{BC} 사이의 거리를 구하여라.

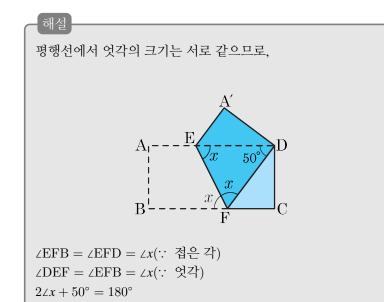

cm

답:

▷ 정답: 5 cm

해설

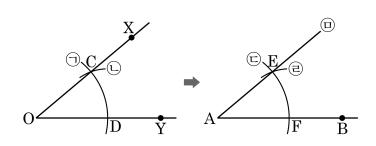

점과 직선 사이의 거리는 점에서 직선에 내린 수선의 발까지의 거리이므로 5cm이다. 8. 다음 그림에서 l // m일 때, $\angle x + \angle y + \angle z$ 의 크기를 구하여라.


$$\angle y = 18^{\circ} + 63^{\circ} = 81^{\circ}$$

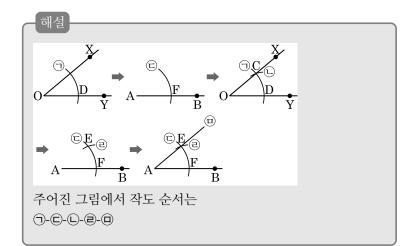
 $\angle x = 180^{\circ} - 63^{\circ} = 117^{\circ}$
 $\angle z = 88^{\circ}$ (엇각)

 $\therefore \ \angle x + \angle y + \angle z = 117^{\circ} + 81^{\circ} + 88^{\circ} = 286^{\circ}$

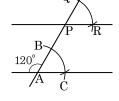
9. 다음 그림은 직사각형 ABCD 를 점 B 가 점 D 에 오도록 접은 것이다. $\angle EDF = 50^{\circ}$ 일 때, $\angle x$ 의 크기는?

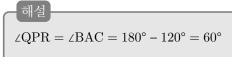


① 45° ② 50° ③ 55° ④ 60° ⑤ 65°



 $\therefore \angle EFD = \angle x = \frac{1}{2} \times (180^{\circ} - 50^{\circ}) = 65^{\circ}$


10. 다음 그림은 ∠XOY 와 크기가 같은 각을 선분 AB 위에 작도하는 과정이다. 이 작도의 순서를 작성한 것이 잘못되었다. 바른 것을 고르면?


주어진 그림의 작도 순서는 ©-©-@-⑦-@이다.

11. 다음은 크기가 같은 각의 작도법을 이용하여 AC와 평행한 PR를 작도한 것이다. ∠QPR의 크기는 얼마인가?

① 40°

② 50°

12. 삼각형의 세 변의 길이가 각각 a, a-1, a+5 일 때, 다음 중 a 의 값이 될 수 없는 것을 모두 고르면?

3 8

세 변의 길이는 모두 양수이므로 a-1>0, a>1가장 긴 변의 길이 a+5 가 다른 두 변의 길이의 합보다 작아야 하므로 a+(a-1)>a+5∴ a>6 13. 그림과 같이 평면 위에 점들이 있을 때, 직선, 반직선, 선분의 개수를 각각 찾아 그 개수를 모두 더하여라.

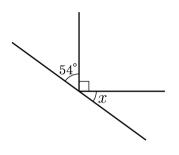
▷ 정답: 24 개

해설

직선 \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{BC} , \overrightarrow{BD} , $\overrightarrow{CD} \Rightarrow 6$ 개

반 직 선 \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{AC} , \overrightarrow{CA} , \overrightarrow{AD} , \overrightarrow{DA} , \overrightarrow{BC} , \overrightarrow{CB} , \overrightarrow{BD} , \overrightarrow{DB} , \overrightarrow{CD} , $\overrightarrow{DC} \Rightarrow 12$ 개
선분 \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{BC} , \overrightarrow{BD} , $\overrightarrow{CD} \Rightarrow 6$ 개

따라서 직선, 반직선, 선분의 개수를 모두 더하면 6+12+6=24 개다.


14. 다음 설명 중 옳은 것을 모두 고르면?

- ① 두 직선이 한 점에서 만날 때, 그 만나는 점을 두 직선의 교점이라 한다.
- ⓒ 반직선 AB와 반직선 BA는 겹치는 부분이 없다.
- © 두 점 사이의 최단 거리는 두 점을 잇는 선분의 길이이다.
- ② 한 점을 지나는 직선은 한개 뿐이다.
- ◎ 두 개의 점을 지나는 직선은 무수히 많다.

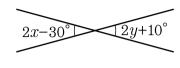
해설

- © 겹치는 부분은 선분 AB이다.
- ② 한 점을 지나는 직선은 무수히 많다.
- ◎ 두 개의 점을 지나는 직선은 한개 뿐이다.

15. 다음 그림에서 $\angle x$ 의 크기는?

① 24°

② 28°

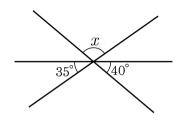

③ 32°

4)3

⑤ 40°

180° – 90° – 54° = 36°이다.

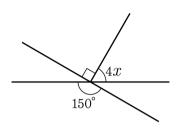
16. 다음 그림에서 $\angle x - \angle y$ 의 값을 구하여라.


- ▶ 답:
- ➢ 정답: 20 º

 $2x - 30^{\circ} = 2y + 10^{\circ}$ $2x - 2y = 40^{\circ}$

2x - 2y = 40 $2(x - y) = 40^{\circ}$

 $\therefore \ \angle x - \angle y = 20^{\circ}$


17. 다음 그림에서 $\angle x$ 의 크기를 구하여라.

해설

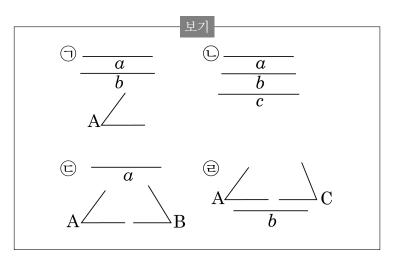
$$\angle x = 180^{\circ} - (35^{\circ} + 40^{\circ}) = 105^{\circ}$$

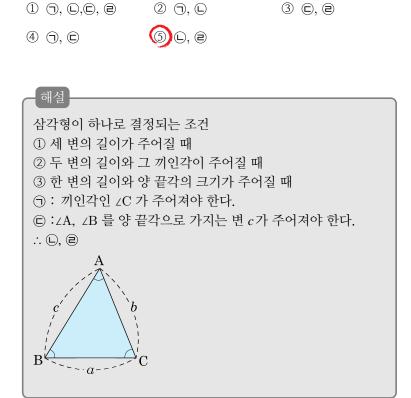
18. 다음 그림에서 $\angle x$ 의 크기를 구하여라.

- ▶ 답:
- ▷ 정답: 15°

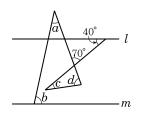
$$90^{\circ} + 4x = 150^{\circ}$$

 $4x = 60^{\circ}$


 \therefore $\angle x = 15^{\circ}$


- 19. 공간에서의 직선의 위치 관계에 대한 다음 설명 중 옳은 것은?
 - ① 한 점을 지나는 직선은 2 개이다.
 - ② 서로 다른 두 직선은 만나지 않으면 꼬인 위치에 있다.
 - ③ 한 직선과 직교하는 서로 다른 두 직선은 수직이다.
 - ④ 한 직선과 꼬인 위치에 있는 서로 다른 두 직선은 수직이다.
 - ⑤ 한 직선에 평행한 서로 다른 두 직선은 평행하다.

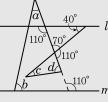
해설


- ① 한 점을 지나는 직선은 무수히 많다.
- ② 서로 다른 두 직선이 만나지 않으면 평행하거나, 꼬인 위치에 있다.
- ③ 한 직선과 직교하는 서로 다른 두 직선은 평행하거나 만나거나 꼬인 위치에 있다.
- ④ 한 직선과 꼬인 위치에 있는 서로 다른 두 직선은 평행하거나 만나거나 꼬인 위치에 있다.

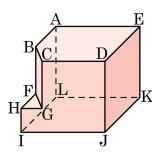
20. 다음 보기의 조건 중 하나의 삼각형만을 작도할 수 있는 것을 모두 고르면? (단 $\angle A$ 의 대응변은 선분a 이다.)

21. 다음 그림에서 직선 l 과 m 이 평행할 때, $\angle a + \angle b - \angle c - \angle d$ 의 값을 구하여라.

▶ 답:


_

➢ 정답: 0°

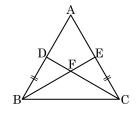

x + y + z = 180°이므로 x = 180° - (y + z), 삼각형의 한 외각의 크기 180° - x는 180° $- \{180$ ° $- (y + z)\} = y + z$, 따라서 삼각형의 한 외각의 크기는 그와 이웃하지 않는 두 내각의 크기의 합과 같다. 다음 그림과 같이 보조선을 그으면

위 그림에서 삼각형의 세 내각의 크기의 합은

$$\angle a + \angle b = 110^{\circ}$$
, $\angle c + \angle d = 110^{\circ}$
따라서 $\angle a + \angle b - \angle c - \angle d$
 $= \angle a + \angle b - (\angle c + \angle d)$
 $= 110^{\circ} - 110^{\circ} = 0^{\circ}$

22. 다음은 직육면체의 일부분을 잘라낸 입체도형이다. 선분 FG 와 꼬인 위치에 있는 모서리 중에서 선분 FH 에 평행한 모서리를 모두 고른 것은?

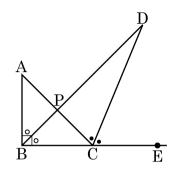
- ① \overline{AB} , \overline{BC} , \overline{FG} , \overline{GC}
- \bigcirc \overline{CD} , \overline{IJ} , \overline{LK} , \overline{AE}


 \bigcirc \overline{AB} , \overline{CD} , \overline{IJ} , \overline{LK}

 $\bigcirc \overline{AB}, \overline{LI}, \overline{JK}, \overline{DE}$

해설

 $\overline{
m FH}$ 에 평행한 모서리는 $\overline{
m AB}$, $\overline{
m LI}$, $\overline{
m JK}$, $\overline{
m DE}$ 이고, 이것들은 모두 $\overline{
m FG}$ 와 꼬인 위치에 있다. 따라서 구하는 것은 \oplus 이다.


23. 다음 그림의 정삼각형 ABC에서 $\overline{DB} = \overline{EC}$ 이다. ΔDFB 와 합동인 삼각형을 구하여라.

- ▶ 답:
- > 정답 : △ EFC

△EFC와 ASA 합동이다.

24. 다음 그림은 직각이등변삼각형 ABC 의 ∠B 의 이등분선과 ∠C 의 외각의 이등분선의 교점을 D 라 한 것이다. ∠BDC 의 크기를 구하면?

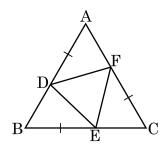
① 19.5° ② 20.5° ③ 21.5° ④ 22.5° ⑤ 23.5°

직각이등변삼각형이므로 ∠BCP = ∠BAP = 45°
$$\overline{AB} = \overline{BC}, \ \overline{BP} \vdash \overline{S}\overline{S}$$

$$45° = \angle ABP = \angle CBP \ (∵ 이등분)$$

$$\Rightarrow \triangle ABP \equiv \triangle CBP \ (SAS 합동)$$

$$\Rightarrow \angle 90° = \angle BPA = \angle BPC$$

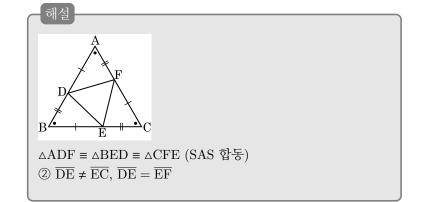

$$\Rightarrow \angle DPC = 90°$$

$$\angle PCE = 180° - \angle BCP = 180° - 45° = 135°$$

$$\angle PCD = \frac{1}{2} \angle PCE = \frac{135}{2} = 67.5°$$
따라서 ∠BDC = 180° - ∠PCD - ∠DPC
$$= 180° - 67.5° - 90°$$

 $= 22.5 \,^{\circ}$

25. 다음 그림에서 $\triangle ABC$ 가 정삼각형이고, $\overline{AD} = \overline{BE} = \overline{CF}$ 일 때, 다음 중 <u>틀린</u> 것은?



 $\overline{\mathrm{DE}} = \overline{\mathrm{EC}}$

 \bigcirc $\overline{DF} = \overline{EF}$

- ① $\angle ADF = \angle BED$
- \bigcirc $\angle DEF = 60^{\circ}$
- $\overline{\text{BD}} = \overline{\text{CE}}$

