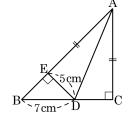
1. 다음 그림과 같이 $\angle C=90$ ° 인 직각삼각형 ABC 에서 $\overline{AE}=\overline{AC},\ \overline{AB}\bot\overline{DE}$ 일 때, \overline{DC} 의 길이를 구하여라.



▷ 정답: 5 cm

 $\underline{\mathrm{cm}}$

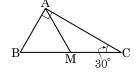
▶ 답:

해설

ΔAED와 ΔACD에서 ĀĒ = ĀC, ∠AED = ∠ACD, ĀD는 공통

∴ △AED ≡ △ACD (RHS 합동)
 ∴ DC = ED = 5 (cm)

 ${f 2}$. 다음 직각삼각형 ABC 의 빗변의 중점을 ${f M}$, $\angle ACB = 30\,^{\circ}$ 일 때, $\triangle ABM$ 은 무슨 삼각형 인지 말하여라.



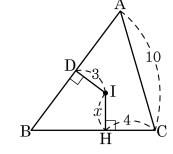
▶ 답:

▷ 정답: 정삼각형

해설

 $\overline{\mathrm{AM}} = \overline{\mathrm{CM}}$, $\Delta \mathrm{AMC}$ 는 이등변삼각형, $\angle {\rm MAC} = \angle {\rm MCA} = 30\,^{\circ}$, $\angle {\rm BAM} = 60\,^{\circ}$ $\angle {\rm MBA} = 60\,^{\circ},\, \angle {\rm BAM} = 60\,^{\circ},\, \angle {\rm AMB} = 60\,^{\circ}$ 이므로 △ABM 은 정삼각형이다.

3. 다음 그림에서 점 I가 $\triangle ABC$ 의 내심일 때, x의 값을 구하여라.

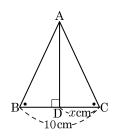


▶ 답: ▷ 정답: 3

삼각형의 내심에서 세 변에 이르는 거리는 같으므로 $x=\overline{\mathrm{IH}}=3$

이다.

4. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle B = \angle C$ 일 때, x 의 값은?



① 3.5 ② 4 ③ 4.5

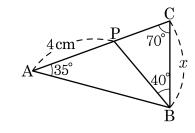
4)5

⑤ 5.5

 $\triangle ABC$ 는 이등변삼각형이고 \overline{AD} 는 \overline{BC} 를 수직이등분하므로

 $x = \frac{1}{2} \times 10 = 5$

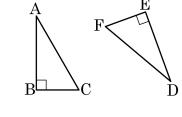
5. 다음 그림에서 x 의 길이는?



- ① 3cm
- ② 3.5cm ⑤ 5cm
- **3**4cm
- ④ 4.5cm
- ⊕ 5cm

____ ΔBPC 에서 ∠BPC = 180° – 70° – 40° = 70° 이므로 이등변삼 각형

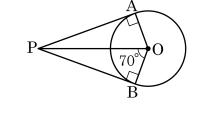
△BPA 에서 ∠BPA = 110° , ∠ABP = 35° 이므로 이등변삼각형 ∴ $\overline{AP} = \overline{BP} = \overline{BC} = 4 \mathrm{cm}$ ${f 6.}$ 다음 중 두 직각삼각형 ABC , DEF 가 서로 합동이 되는 조건이 <u>아닌</u> 것은?



- ① $\overline{AB} = \overline{DE}$, $\overline{BC} = \overline{EF}$ ② $\overline{AB} = \overline{DE}$, $\angle A = \angle D$

세 내각이 같다고 해서 합동이라 말할 수는 없다.

7. 다음 그림에서 ∠APB 의 크기는 ?



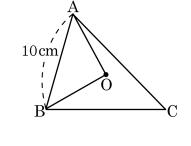
① 20° ② 40° ③ 80° ④ 90° ⑤ 140°

 $\triangle PAO \equiv \triangle PBO \text{ (RHA 합동) 이므로}$ $\angle POA = 70^{\circ}$

 $\therefore \angle APB = 40^{\circ}$

해설

다음 그림에서 점 O는 $\triangle ABC$ 의 외심이다. $\overline{AB}=10\,\mathrm{cm}$ 이고, $\triangle AOB$ 8. 의 둘레의 길이가 $24\,\mathrm{cm}$ 일 때, $\Delta\mathrm{ABC}$ 의 외접원의 반지름의 길이는?



 \bigcirc 3cm

 \bigcirc 4cm

 $\ \, 3\ \, 5\mathrm{cm}$

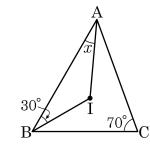
 \bigcirc 6cm

(5)7cm

해설

점 O가 $\triangle ABC$ 의 외심이므로 $\overline{OA} = \overline{OB}$ 따라서 △AOB의 둘레의 길이는 $\overline{\mathrm{OA}} + \overline{\mathrm{OB}} + \overline{\mathrm{AB}} = 2\overline{\mathrm{OA}} + 10 = 24$ $\therefore \mathrm{OA} = 7(\,\mathrm{cm})$

다음 그림에서 점 I는 $\triangle ABC$ 의 내심이다. $\angle IBA=30^\circ,\ \angle C=70^\circ$ 일 때, $\angle x$ 의 크기는? 9.



① 20°

②25°

 30° 435°

⑤ 40°

$$\angle B = 2 \times 30^{\circ} = 60^{\circ}$$

 $\angle A = 180^{\circ} - (60^{\circ} + 70^{\circ}) = 50^{\circ}$

$$\therefore \angle x = \angle IAB = \frac{1}{2} \times 50^{\circ} = 25^{\circ}$$

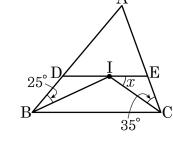
10. 넓이가 8 인 $\triangle ABC$ 의 둘레의 길이가 12 일 때, $\triangle ABC$ 의 내접원의 반지름의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $rac{4}{3}$

내접원의 반지름의 길이를 r이라 하면 $\frac{1}{2} \times r \times 12 = 8$ 이다. 따라서 $r = \frac{4}{3}$ 이다.

11. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이고, $\overline{DE}//\overline{BC}$ 일 때, x 의 값을 구하여라.



▷ 정답: 35 º

▶ 답:

점 I 가 삼각형의 세 내각의 이등분선의 교점이므로

해설

 $\angle IBC = \angle DBI = 25^{\circ}$, $\angle ICB = \angle ECI = 35^{\circ}$ $\overline{\rm DE}//\overline{\rm BC}$ 이므로 $\angle {\rm IBC}=\angle {\rm DIB}=25^\circ$, $\angle {\rm ICB}=\angle {\rm EIC}=35^\circ$ 이다.

따라서 $\angle x = \angle EIC = 35^{\circ}$ 이다.

- 12. 다음 중 내심과 외심이 일치하는 삼각형은?
 - ① 직각삼각형
 ② 예각삼각형
 ③ 둔각삼각형

 ④ 정삼각형
 ⑤ 이등변삼각형

내심과 외심이 일치하는 삼각형은 정삼각형이다.

13. 다음은 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC 에서 $\angle B$ 와 $\angle C$ 의 이등분선 의 교점을 P 라 할 때, ΔPBC 는 이등변삼각형임을 증명하는 과정이다.

$$\triangle ABC$$
 에서 $\angle B = \boxed{(7)}$ 이므로 $\angle PBC = \boxed{(4)} \times \angle B = \frac{1}{2} \times \boxed{(4)} = \boxed{(4)}$ 따라서 $\triangle PBC$ 는 $\boxed{(4)}$ 이다. $\triangle PBC$ 는 $\boxed{(4)}$ 이다.

① (7H) ∠C ③ (CH) ∠C ②(H) 2 ④ (라) ∠PCB

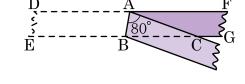
⑤ 때 이등변삼각형

 $\triangle ABC$ 에서 $\angle B = (\angle C)$ 이므로

해설

 $\angle PBC = \left(\frac{1}{2}\right) \times \angle B = \frac{1}{2} \times (\angle C) = (\angle PCB)$

14. 다음 그림과 같이 폭이 일정한 종이테이프를 접었다. $\angle BAC = 80^{\circ}$ 일 때, 다음 중 각의 크기가 $\angle BAC$ 와 <u>다른</u> 것을 모두 고르면?



① ∠DAB ④ ∠ACB ②∠ABE

③ ∠ABC

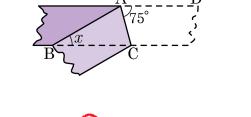
and the second

① 종이 테이프를 접으면 ∠BAC = ∠DAB = 80°

- ② $\angle ABE = 180^{\circ} \angle ABC = 180^{\circ} 80^{\circ} = 100^{\circ}$
- ③ ∠BAC = ∠ABC = 80° (엇각)
- ④ △ABC의 내각의 합은 180°이므로
- $\angle ACB = 180^{\circ} 80^{\circ} 80^{\circ} = 20^{\circ}$ ⑤ $\angle CAF = \angle ACB = 20^{\circ}$ (엇각)

(...,

15. 다음 그림과 같이 폭이 일정한 종이 테이프를 접었다. $\angle CAD = 75^{\circ}$ 일 때, ∠x의 크기는?

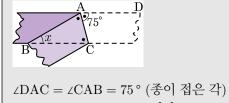


① 20° ② 25°

해설

③30°

④ 35° ⑤ 40°



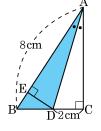
 $\angle DAC = \angle ACB = 75^{\circ}$ (엇각)

따라서 $\triangle ABC$ 는 밑각의 크기가 $75\,^{\circ}$ 이고, $\overline{AB}=\overline{BC}\,$ 인 이등변

삼각형이다. $\therefore \ \angle x = 180^{\circ} - 75^{\circ} - 75^{\circ} = 30^{\circ}$

16. 그림과 같이 $\angle C = 90$ °인 직각삼각형 ABC에서 $\angle A$ 의 이등분선이 변 BC와 만나는 점을 D라 하자. $\overline{\mathrm{CD}}=2\,\mathrm{cm},\,\overline{\mathrm{AB}}=8\,\mathrm{cm}$ 일 때, $\Delta\mathrm{ABD}$ 의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$



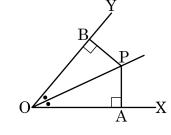
▷ 정답: 8 <u>cm²</u>

▶ 답:

 $\triangle ADE \equiv \triangle ADC (RHA 합동) 이므로$

 $\overline{\mathrm{ED}} = \overline{\mathrm{DC}} = 2(\mathrm{\,cm})$ 따라서 $\triangle ABD$ 의 넓이는 $\frac{1}{2} \times 8 \times 2 = 8 \text{ (cm}^2\text{)}$

17. 다음은 각의 이등분선 위의 한 점에서 각의 두변에 이르는 거리는 같음을 보이는 과정이다. 다음 빈칸에 들어갈 말로 <u>틀린</u> 것은?



보기 -

∠XOY 의 이등분선 위의 한 점 P를 잡으면 $\triangle PAO$ 와 $\triangle PBO$ 에 있어서 $\angle PAO = (\forall B) = 90^{\circ} \cdots \bigcirc$ 가정에서∠POA = ((나)) · · · · □ $\overline{\mathrm{OP}}(\ \square) \) \cdots \ \square$ ᄀ, ℂ, ⓒ에 의해 $\triangle PAO \equiv \triangle PBO$ (ϵ) 합동) $\therefore \overline{\mathrm{PA}} = (\ (\square) \)$

③ (다) 빗변(공통변)

① (フト)∠PBO

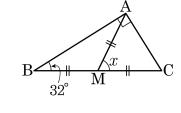
④(라) RHS

② (나) ∠POB

- ⑤ (마) PB

∠XOY 의 이등분선 위의 한 점 P 를 잡으면 Δ PAO 와 Δ PBO 에 있어서 $\angle PAO = (\angle PBO) = 90^{\circ} \cdots \bigcirc$ $\angle POA = (\angle POB) \cdots \bigcirc$ $\overline{\mathrm{OP}} = ($ 빗변(공통변)) \cdots © ⊙, ७, ☞에 의해 $\triangle {\rm PAO} \equiv \triangle {\rm PBO} \; ({\rm RHA} \; \mbox{합동} \;)$ $\therefore \overline{\mathrm{PA}} = (\overline{\mathrm{PB}})$

18. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC 에서 빗변의 중점을 \mathbf{M} 이라 하자. $\angle \mathbf{ABC} = 32^\circ$ 일 때, $\angle x$ 의 크기는?



① 60°

② 62°

4 66°

⑤ 68°

직각삼각형의 빗변의 중점인 점 M 은 외심이므로 $\overline{\mathrm{MB}} = \overline{\mathrm{MA}} =$

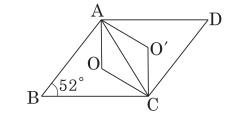
해설

MC 이다. $\triangle ABM$ 은 이등변삼각형이므로 ($\because \overline{MB} = \overline{MA}$) $\angle MBA = \angle MAB = 32^{\circ}$

두 내각의 합은 나머지 한 각의 외각의 크기와 같으므로

 $\angle AMC = \angle MBA + \angle MAB = 32^{\circ} + 32^{\circ} = 64^{\circ}$ 이다.

19. 평행사변형ABCD 에서 $\angle B = 52$ ° 이고 점 O, O' 은 각각 \triangle ABC, \triangle CDA 의 외심이다. 이때 \angle OAO' 의 크기는?



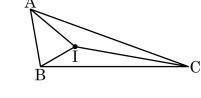
① 52° ② 52°

④ 104° ⑤ 116°

해설 $\angle B = 52$ °이므로 $\angle AOC = 2 \times 52$ ° = 104°

이때, □OAO′C는 마름모이므로 ∠AOC+∠OAO′ = 180° 따라서 ∠OAO′ = 180° - 104° = 76°

20. 다음 그림에서 \triangle ABC의 내심을 I 라 하고 \angle AIB : \angle BIC : \angle AIC = 5 : 6 : 7일 때, ∠ABC의 크기는?



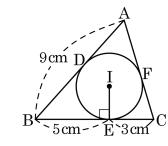
- ① 20° ② 40° ③ 60° ④ 80°

$$\angle AIC = 360^{\circ} \times \frac{7}{5+6+7} = 140^{\circ}$$

 $\angle AIC = 140^{\circ} = 90^{\circ} + \frac{1}{2} \angle ABC$

 $\therefore \angle ABC = 100^{\circ}$

21. 다음 그림에서 점 I 는 \triangle ABC 의 내심이고, 점 D, E, F 는 접점이다. 내접원의 반지름의 길이가 2 cm 일 때, \triangle ABC 의 넓이는?



 $4 25 \text{cm}^2$

- ② 23cm^2 ③ 26cm^2
- 324cm^2

 $\overline{AF} = \overline{AD} = \overline{AB} - \overline{BD} = \overline{AB} - \overline{BE} = 9 - 5 = 4(cm)$ 이므로

해설

 $\overline{AC} = \overline{AF} + \overline{CF} = 4 + 3 = 7 (cm)$ 이다. 따라서 $\triangle ABC = \frac{1}{2} \times 2 \times (9 + 8 + 7) = 24 (cm^2)$ 이다.

22. 점 I는 $\triangle ABC$ 의 내심이다. \overline{AB} = $14\,\mathrm{cm}$, $\overline{\mathrm{AC}}=10\,\mathrm{cm}$, $\overline{\mathrm{DE}}/\hspace{-0.1cm}/\,\overline{\mathrm{BC}}$ 일 때, 14 cm) △ADE의 둘레의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

10 cm

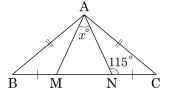
▷ 정답: 24<u>cm</u>

▶ 답:

 $\Delta \mathrm{DBI}$ 에서 $\overline{\mathrm{DE}} \, / \! / \, \overline{\mathrm{BC}}$ 이므로 $\angle CBI = \angle DIB()$ 각 $) \cdots$ 또, 점 I는 내심이므로 \angle DBI = \angle CBI \cdots © ①, ⓒ에서 ∠DBI = ∠DIB $\therefore \ \overline{\rm DB} = \overline{\rm DI}$ $\Delta {
m EIC}$ 에서 $\overline{
m DE}\,/\!/\,\overline{
m BC}$ 이므로 $\angle BCI = \angle EIC()$ 각)··· (② 또, 점 I는 내심이므로 ∠BCI = ∠ECI··· @ ②, ②에서 ∠EIC = ∠ECI $\therefore \ \overline{\mathrm{IE}} = \overline{\mathrm{EC}}$ 따라서 $\overline{DI} + \overline{IE} = \overline{DB} + \overline{EC}$ 이므로 $\overline{DE} = \overline{DB} + \overline{EC}$ ∴ (△ADE의 둘레의 길이)

 $= \overline{\mathrm{AD}} + \overline{\mathrm{DI}} + \overline{\mathrm{EI}} + \overline{\mathrm{AE}}$ $= \overline{\mathrm{AD}} + \overline{\mathrm{DB}} + \overline{\mathrm{EC}} + \overline{\mathrm{AE}}$

 $= \overline{AB} + \overline{AC}$ = 14 + 10 = 24 (cm) ${f 23.}$ $\overline{
m AB}=\overline{
m AC}$ 인 이등변삼각형 m ABC에서 $\overline{\mathrm{BM}} = \overline{\mathrm{CN}}$ 이고, $\angle \mathrm{ANC} = 115\,^{\circ}$ 일 때, $\angle x$ 의 크기를 구하여라.



➢ 정답: 50°

▶ 답:

이등변삼각형이므로 $\angle B = \angle C$ 이고

해설

 $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}, \, \overline{\mathrm{BM}} = \overline{\mathrm{CN}}$ 이므로 $\triangle {\rm ABM} \equiv \triangle {\rm ACN}({\rm SAS}$ 합동)

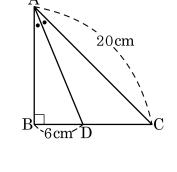
 $\therefore \ \overline{\mathrm{AM}} = \overline{\mathrm{AN}}$

즉, ΔAMN이 이등변삼각형이므로

 $x = 180^{\circ} - (65^{\circ} \times 2) = 50^{\circ}$

 $\angle \mathrm{AMN} = \angle \mathrm{ANM} = 180\,^{\circ} - 115\,^{\circ} = 65\,^{\circ}$

24. 다음 그림과 같이 $\angle B = 90^\circ$ 인 직각삼각형 ABC 에서 $\angle A$ 의 이등분 선이 \overline{BC} 와 만나는 점을 D 라 하자. $\overline{BD} = 6 \mathrm{cm}, \ \overline{AC} = 20 \mathrm{cm}$ 일 때, $\triangle ADC$ 의 넓이는 몇 cm^2 인지 구하여라. (단, 단위는 생략한다.)

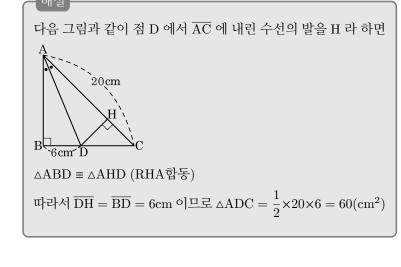


① 56 ② 57

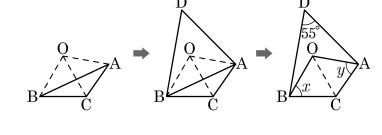
③ 58

4 59

⑤60



25. 점 O 를 외심으로 하는 \triangle ABC 를 그리고, 다시 점 O 를 외심으로 하고 한 변을 \overline{AB} 로 하는 $\triangle ABD$ 를 만들면 $\angle BDA = 55^\circ$ 이다. $\angle x + \angle y$ 의 값을 구하여라.



 ► 답:

 ▷ 정답:
 125°

 $\angle BDA = 55^\circ$, $\angle BOA = 2\angle BDA = 110^\circ$. $\square AOBC$ 에서 $\angle BCA = \angle OBC + \angle OAC = \angle x + \angle y$ 이므로,

 $\angle x + \angle y + \angle x + \angle y + 110^{\circ} = 360^{\circ}, \ \angle x + \angle y = 125^{\circ}$