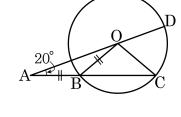
다음 그림에서 $\overline{\mathrm{AB}}=\overline{\mathrm{BO}}$ 이고 $\angle\mathrm{OAB}=20^\circ$ 일 때, $\angle\mathrm{COD}$ 의 크기를 1. 구하여라.



▷ 정답: 60_°

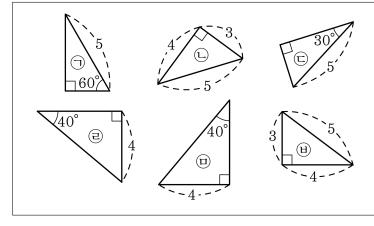
▶ 답:

해설

 $\angle COD = 180^{\circ} - (20^{\circ} + 100^{\circ}) = 60^{\circ}$

 $\angle OBC = \angle OCB = 40^{\circ}$ 이므로 $\angle BOC = 100^{\circ}$

2. 다음 직각삼각형 중에서 서로 합동인 것끼리 짝지은 것이 <u>아닌</u> 것을 모두 고르면?



① ① 과 L) ④ L과 B

② ①과 © ③ @과 @ ③Q과 @

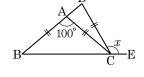
해설

⑤과 ⓒ : 빗변의 길이가 5 로 같고, 대각의 크기가 30°,60° 로

같으므로 RHA 합동이다. ②과 📵 : 빗변의 길이가 5 로 같고, 나머지 한 대변의 길이가 3 으로 같으므로 RHS 합동이다.

(a)과 (a): 대응각의 크기가 40°, 90°로 같고 한 대변의 길이가 4로 같으므로 ASA 합동이다.

3. 다음 그림에서 $\overline{AB} = \overline{AC} = \overline{CD}$ 이고 ∠BAC = 100°일 때, ∠DCE의 크기를 구 하여라.



▷ 정답: 120_°

$\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ 이므로

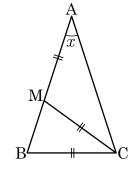
▶ 답:

 $\angle B = \angle ACB = \frac{1}{2}(180\degree - 100\degree) = 40\degree$ 이다.

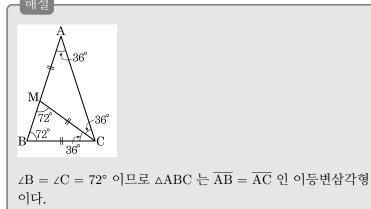
 $\overline{\mathrm{AC}} = \overline{\mathrm{DC}}$ 이므로 $\angle D = \angle CAD = 180$ ° -100° = 80°이다.

따라서 $\angle DCE = \angle B + \angle D = 40^{\circ} + 80^{\circ} = 120^{\circ}$

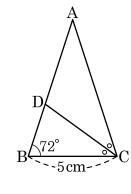
그림에서 $\overline{\mathrm{AD}}=\overline{\mathrm{BD}}=\overline{\mathrm{BC}}$ 이고, $x=36^\circ$ 일 때, $\Delta\mathrm{ABC}$ 는 어떤 **4.** 삼각형인가?



- ① $\overline{AB} = \overline{BC}$ 인 이등변삼각형 ② 직각삼각형
- ③ $\overline{AC} = \overline{BC}$ 인 이등변삼각형 ④ 정삼각형
- \bigcirc $\overline{AB} = \overline{AC}$ 인 이등변삼각형



5. 다음 그림에서 $\triangle ABC$ 는 $\angle B=\angle C$ 인 이등변삼각형이다. $\angle C$ 의 이등분선이 \overline{AB} 와 만나는 점을 D 라 할 때, \overline{AD} 의 길이는?



① 3cm

② 4cm

③5cm

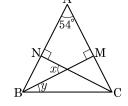
4 6cm

⑤ 7cm

 $\angle B = \angle C = 72$ ° 이코 $\angle BCD = \angle ACD = 36$ ° 이므로, $\angle A = 36$ °

이다. 따라서 $\triangle ABC$, $\triangle ADC$ 는 두 내각의 크기가 같으므로 이등변삼각형이다. 따라서 $\overline{BC}=\overline{DC}=\overline{AD}=5\,\mathrm{cm}$ 이다.

다음 그림에서 $\triangle ABC$ 는 $\overline{AB}=\overline{AC}$, $\angle A=$ 6. $54\,^{\circ}$ 인 이등변삼각형이다. 점 B, C 에서 대 변에 내린 수선의 발을 각각 M,N 이라 할 때, $\angle x + \angle y$ 의 크기는 ?



①81°

⑤ 90°

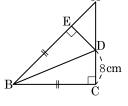
\triangle BNC \equiv \triangle CMB (RHA 합동)

 $\triangle \mathrm{BMC}$ 에서 $\angle \mathrm{MCB} = 63\,^\circ, y = 27\,^\circ$ \angle MCN = 63 ° - 27 ° = 36 °

 $\therefore x = 180 \degree - (36 \degree + 90 \degree) = 54 \degree$

 $\therefore \angle x + \angle y = 54^{\circ} + 27^{\circ} = 81^{\circ}$

7. 그림에서 △ABC는 ∠C = 90°이고 ĀC = BC 인 직각이등변삼각형이다. BC = BE, ĀB⊥DE 이고 CD = 8 cm 일 때, △AED의 넓이를 구하여라.



 ▶ 정답:
 32 cm²

▶ 답:

 ΔABC 는 직각이등변삼각형이므로 $\angle BAC=45\,^{\circ}$ 이다. 따라서 ΔAED 도 직각이등변삼각형이다.

△EDB ≡ △CDB (RHS 합동), CD = ED이므로 ED = EA이다. 그러므로 △AED는 밑변 8 cm, 높이 8 cm 인 직각이등변삼각형

이다. 따라서 넓이는 $\frac{1}{2} \times 8 \times 8 = 32 \text{ (cm}^2)$ 이다.

 $\underline{\mathrm{cm}^2}$

2

8. 다음 그림과 같이 직각이등변삼각형 ABC 에서 \overline{AD} 가 $\angle A$ 의 이등분선이고, 점 D 에서 \overline{AC} 에 내린 수선의 발을 E 라고 할 때 x 의 길이를 구하여라.

8cm B D 5cm

▷ 정답: 3<u>cm</u>

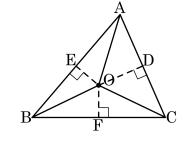
해설

답:

 $\overline{AB} = \overline{BC}$, $\overline{BD} = \overline{BC} - \overline{DC} = 8cm - 5cm = 3cm$ \overline{AD} 는 $\angle BAE$ 를 이등분하므로, $\triangle ABD \equiv \triangle AED$ (RHS 합동)

 $\underline{\mathrm{cm}}$

∴ $\overline{DE} = \overline{BD}$ 따라서 $\overline{DE} = 3$ cm 이다. 9. 다음 그림에서 점 O 가 삼각형 ABC 의 외심일 때, 다음 중 옳은 것을 모두 고르면?



 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

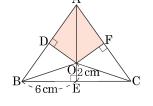
(5) (2), (D)

① ①, 心

해설

②¬, ⊜

©, ©, @은 알 수 없다. ______ 10. 다음 그림에서 점 O는 △ABC의 외심이다. $\triangle ABC = 50 \, \mathrm{cm}^2$ 일 때, □ADOF의 넓이를 구하여라.



 답:
 cm²

 ▷ 정답:
 19 cm²

 $\triangle OBE = \frac{1}{2} \times 6 \times 2 = 6 (\,\mathrm{cm}^2)$

또한, △OBE ≡ △OCF, △OCF ≡ △OAF,

△OAD ≡ △OBD(RHS합동)이므로

 $\Delta OBE + \Delta OCF + \Delta OAD = \frac{1}{2} \Delta ABC$ $= \frac{1}{2} \times 50$ $= 25 (cm^{2})$

 $\therefore \Box ADOF = \triangle AOD + \triangle AOF$ $= \triangle AOD + \triangle COF$

= 25 - 6= $19 (\text{ cm}^2)$

11. 다음 그림에서 점 O는 삼각형 ABC의 외심이다. ĀB = 6 cm 이고 삼각형 AOB의 둘레의 길 이가 20 cm 일 때, △ABC의 외접원의 넓이를 구하여라. B O

▷ 정답: 49π cm²

해설

점 O가 삼각형 ABC의 외심이므로 $\overline{OA} = \overline{OB}$ 삼각형 AOB의 둘레의 길이가 $20\,\mathrm{cm}$ 이므로

- OA + OB + AB = 2OA + 6 = 20 ∴ OA = 7(cm) ∴ (△ABC의 외접원의 넓이) = π × 7² = 49π(cm²)

12. 다음 그림에서 점 O는 △ABC의 외심일 때, ∠AOC의 크기를 구하여라.

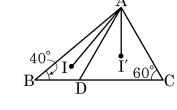
30° x C

 답:

 ▷ 정답:
 100°

해설

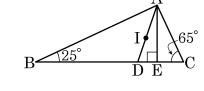
점 O는 △ABC의 외심이므로 점 B와 연결하면 OA = OB 이므로 ∠ABO = ∠BAO = 30° OB = OC 이므로 ∠OBC = ∠OCB = 20° 따라서 ∠ABC = 30° + 20° = 50° ∴ ∠AOC = 2∠ABC = 2 × 50° = 100° 13. 다음 그림에서 점 I, I' 는 각각 \triangle ABD, \triangle ADC 의 내심이다. \angle B = 40°, \angle C = 60° 일 때, \angle IAI' 의 크기는?



- ① 20° ② 30°
- ③ 40°
- ④ 50°
- ⑤ 60°

$$\angle IAI' = \frac{1}{2} \angle A = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$$

14. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이다. $\overline{AE} \bot \overline{BC}$ 일 때, $\angle DAE$ 의 크기는?

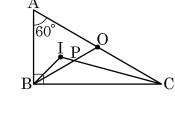


① 15° ② 17° ③ 18° ④ 20° ⑤ 22°

 $\angle A = 180^{\circ} - (25^{\circ} + 65^{\circ}) = 90^{\circ}$ $\angle DAC = \frac{1}{2} \times 90^{\circ} = 45^{\circ}$

$$\therefore \angle DAE = 45^{\circ} - 25^{\circ} = 20^{\circ}$$

15. 다음 그림에서 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 점 I,O 는 각각 내심, 외심이다. $\angle A=60^\circ$ 일 때, $\angle BPC$ 의 크기를 구하여라.



▷ 정답: 135 _°

▶ 답:

외심의 성질에 의해 $\overline{\mathrm{OA}} = \overline{\mathrm{OB}}$ 이므로 $\angle\mathrm{A} = \angle\mathrm{OBA} = 60^\circ$ \rightarrow

∠OBC = 30° 이다. …Э 내심의 정의에 의해 $\overline{
m IC}$ 가 $\angle {
m ACB} = 30^\circ$ 를 이등분하므로 $\angle {
m ICB} =$

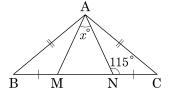
 15° 이고, $\angle BIC = 90^\circ + 60^\circ \times \frac{1}{2} = 120^\circ$ 이므로 $\triangle IBC$ 의 내각의 합을 이용하면 $\angle IBC = 180^\circ - (120^\circ + 15^\circ)$

= 45° 이다. …©

①-①에 의해 ∠IBP = 15° 이다. ∠BPC 는 ∠IPB 의 외각이므로 ∴∠BPC = ∠BIC + ∠IBP =

 $120^\circ + 15^\circ = 135^\circ$

16. $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 $\overline{\mathrm{BM}} = \overline{\mathrm{CN}}$ 이고, $\angle \mathrm{ANC} = 115\,^{\circ}$ 일 때, $\angle x$ 의 크기를 구하여라.



▶ 답: ➢ 정답: 50°

해설

이등변삼각형이므로 $\angle B = \angle C$ 이고

 $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}, \ \overline{\mathrm{BM}} = \overline{\mathrm{CN}}$ 이므로 $\triangle {\rm ABM} \equiv \triangle {\rm ACN}({\rm SAS}$ 합동)

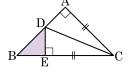
 $\therefore \ \overline{\mathrm{AM}} = \overline{\mathrm{AN}}$

즉, ΔAMN이 이등변삼각형이므로

 $\therefore x = 180^{\circ} - (65^{\circ} \times 2) = 50^{\circ}$

 $\angle \mathrm{AMN} = \angle \mathrm{ANM} = 180\,^{\circ} - 115\,^{\circ} = 65\,^{\circ}$

17. 그림의 △ABC는 ∠A = 90°이고, ĀB = ĀC 인 직각이등변삼각형이다. ĀC = ĒC, BC⊥DE이고 ĀD = 6 cm 일 때, △DBE의 넓이는?



① $10 \,\mathrm{cm}^2$ ④ $22 \,\mathrm{cm}^2$ ② $14 \, \text{cm}^2$ ③ $26 \, \text{cm}^2$

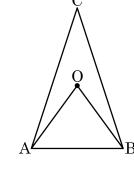
 $\triangle ABC$ 는 직각이등변삼각형이므로 $\angle ABC=45\,^{\circ}$ 이다.

따라서 $\triangle BED$ 도 직각이등변삼각형이다. $\triangle ADC \equiv \triangle EDC$ (RHS 합동), $\overline{AD} = \overline{DE}$ 이다. 따라서 $\overline{ED} = \overline{DE}$ 이다.

 $\overline{
m EB}$ 이다. 그러므로, $\Delta
m BED$ 는 밑변 $6\,
m cm$, 높이 $6\,
m cm$ 인 직각이등변삼각형

따라서, 넓이는 $\frac{1}{2} \times 6 \times 6 = 18 \text{ (cm}^2)$ 이다.

18. $\triangle ABC$ 의 외심을 O 라 하고 $\angle A + \angle B : \angle C = 4 : 1$ 일 때, $\angle AOB$ 의 크기를 구하여라.



▷ 정답: 72_°

▶ 답:

 $\angle \mathsf{OAB} = \angle \mathsf{OBA} = x, \, \angle \mathsf{OBC} = \angle \mathsf{OCB} = y, \, \angle \mathsf{OCA} = \angle \mathsf{OAC} =$ z 라고 하면

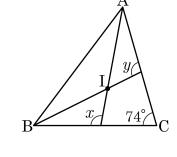
 $2x + 2y + 2z = 180^{\circ}, x + y + z = 90^{\circ} \cdots \bigcirc$ 또한, ∠A + ∠B = 4∠C 이므로

 $x + z + x + y = 4(y + z) \cdot \cdot \cdot \square$

 \bigcirc , \bigcirc 을 연립하면 $x=54\,^\circ$ $\triangle AOB$ 는 $\overline{OA} = \overline{OB}$ 인 이등변삼각형이므로

 $\angle AOB = 180^{\circ} - (54^{\circ} \times 2) = 72^{\circ}$

19. 다음 그림에서 점 I 는 \triangle ABC 의 내심이다. $\angle x + \angle y$ 의 크기를 구하여라.



➢ 정답: 201_°

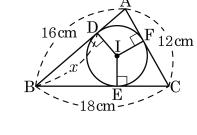
 \triangle ABC에서 \angle IAB = \angle IAC = a,

해설

▶ 답:

 $\angle ABI = \angle CBI = b$ 라 하자. $2\angle a + 2\angle b + 74^\circ = 180^\circ$ $\therefore \angle a + \angle b = 53^\circ$ $\angle x + \angle y = (\angle a + 74^\circ) + (\angle b + 74^\circ) = \angle a + \angle b + 148^\circ = 201^\circ$

20. 다음 그림에서 점 I 는 \triangle ABC 의 내심이다. 이 때, $\overline{\mathrm{BD}}$ 의 길이 x 를 구하여라.



 $\underline{\mathrm{cm}}$

▷ 정답: 11<u>cm</u>

답:

점 I 가 삼각형의 내심이므로 $\overline{AD}=\overline{AF}, \overline{BE}=\overline{BD}, \overline{CE}=\overline{CF}$

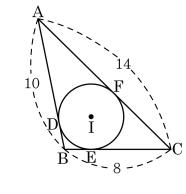
해설

 $\overline{
m BD}=x=\overline{
m BE}$ 이므로 $\overline{
m CE}=18-x=\overline{
m CF}$, $\overline{
m AD}=16-x=\overline{
m AF}$

 $\overline{AC} = \overline{AF} + \overline{CF} = 18 - x + 16 - x = 12$

 $\therefore x = 11(\text{cm})$

 ${f 21}$. 다음 그림에서 점 I 는 ΔABC 의 내심이고, 세 점 D, E, F 는 각각 내접 원과 세 변 AB, BC, AC 의 접점이다. $\overline{AB}=10 \mathrm{cm}, \overline{BC}=8 \mathrm{cm}, \overline{AC}=$ $14 \mathrm{cm}$ 일 때, $\overline{\mathrm{EC}}$ 의 길이는 얼마인가?



 \bigcirc 4cm

 \bigcirc 5cm

3 6cm

 \bigcirc 7cm

 \bigcirc 8cm

점 I 가 삼각형의 내심이므로 $\overline{AD}=\overline{AF},\overline{BE}=\overline{BD},\overline{CE}=\overline{CF}$

해설

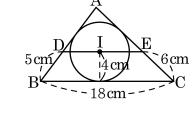
 $\overline{\mathrm{EC}} = x$ 라 하면, $\overline{\mathrm{EC}} = \overline{\mathrm{CF}} = x$ 이고, $\overline{\mathrm{BE}} = 8 - x = \overline{\mathrm{BD}}$,

 $\overline{\mathrm{AF}} = 14 - x = \overline{\mathrm{AD}}$

 $\overline{\mathrm{AB}} = \overline{\mathrm{AD}} + \overline{\mathrm{DB}} = 14 - x + 8 - x = 10$ 이므로 22 - 2x = 10, 12 =2x 이다.

 $\therefore x = 6(\text{cm})$

 ${f 22}$. 점 I 는 ΔABC 의 내접원의 중심이고 반지름이 4cm 이다. 점 I 를 지나 밑변 BC 의 평행한 직선 DE 를 그을 때, □DBCE 의 넓이를 구하여라.



 $\underline{\rm cm^2}$

▷ 정답: 58cm²

▶ 답:

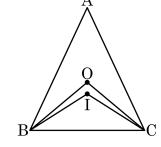
점 I 가 삼각형의 내심이고 $\overline{\rm DE}//\overline{\rm BC}$ 일 때, $\overline{\rm DE}=\overline{\rm DI}+\overline{\rm EI}=$

 $\overline{\rm DB} + \overline{\rm EC}$ 따라서 $\overline{\mathrm{DE}} = 5 + 6 = 11 (\mathrm{cm})$ 이다.

따라서 사다리꼴 DBCE 의 넓이는 $(11+18) \times 4 \times \frac{1}{2} = 58 ($ cm $^2)$

이다.

23. 다음 그림에서 점 O 와 I 는 각각 \triangle ABC 의 외심과 내심이다. \angle BOC = 100° 이고, \angle A = a° , \angle BIC = b° 라고 할 때, b-a 의 값을 구하여라.

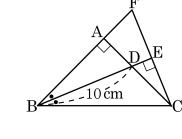


➢ 정답: 65

▶ 답:

 $\angle A = \frac{1}{2} \angle BOC = \frac{1}{2} \times 100^{\circ} = 50^{\circ} \Rightarrow a = 50$ $\angle BIC = 90^{\circ} + \frac{1}{2} \angle A = 90^{\circ} + 25^{\circ} = 115^{\circ} \Rightarrow b = 115$ 따라서 b - a = 115 - 50 = 65 이다.

24. 그림에서 $\overline{AB}=\overline{AC}$, $\angle BAC=\angle CEB=90^\circ$, \overline{BE} 가 $\angle B$ 의 이등분선이고, $\overline{BD}=10\mathrm{cm}$ 일 때, \overline{EF} 의 길이를 구하시오.



 $\underline{\mathrm{cm}}$

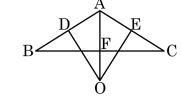
정답: 5 cm

답:

△ABD 와 △ACF 에서
∠BAD = ∠CAF = 90° ··· ⑤

\[
\begin{align*} \overline{AB} = \overline{AC} ··· ⑥
\end{align*}
\(\alpha \overline{BD} = 22.5°, \alpha \overline{ADB} = 67.5°
\(\alpha \overline{ADB} = \alpha \overline{CDE} = 67.5° (∵ 맞꼭지각) 이므로
\(\alpha \overline{ACF} = 22.5°
\)
\(\sqrt{ABD} = \alpha \overline{ACF} ··· ⑥
\(\sqrt{\chi}, \overline{\chi} \overline{ABD} = \alpha \overline{ACF} (ASA합동)
\(\therefore{\chi}, \overline{BD} = \overline{CF} = 10cm
\(\alpha \overline{BCF} = 45° + 22.5° = 67.5° = \alpha \overline{BFC}
\)
\(\sqrt{\chi}, \overline{ABCF} \overline{\chi} \overline{\chi} \overline{BF} = \overline{BC} \overline{O} \overline{O} \overline{BC} \overline{O} \overline{DCF} \overline{DCF}

25. 다음 그림과 같이 $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC 의 외심은 점 O 이고, 점 O 에서 AB, AC 에 내린 수선의 발은 각각 D, E 이다. 또 점 A 에서 \overline{BC} 에 내린 수선의 발은 F 이다. $\overline{OE}=6,\;\overline{BF}=5,\;\overline{OF}=3$ 이고, $\triangle ABC$ 의 넓이가 52 일 때, \overline{AB} 의 길이를 구하여라.



답:

ightharpoonup 정답: $\frac{67}{6}$

