1. 다음 표의 수 중 근호를 사용하지 않고 나타낼 수 있는 수들을 찾아 색칠한 후 이 수들이 나타내는 수를 아래쪽에 색칠하였을 때 두 그림이 나타내는 수를 말하여라.

	√ 0.4	1	$\sqrt{2}$	8	√	15	1	/0.01	√-	-16
	$\sqrt{18}$		$\sqrt{1}$	3	$\sqrt{1}$	100		$\sqrt{25}$	√-	-16
	$\sqrt{-0}$.	9	$\sqrt{0}$)	$\sqrt{1}$	120		$\sqrt{36}$	√	20
	$\sqrt{49}$,	\sqrt{g})	√	81		$\sqrt{64}$	\sqrt{c}	0.09
	$\sqrt{-3}$	6	√3	3		- 9		$\sqrt{4}$	1	8
·		1								
	-5		6		3	0		25		

-10	-0.3	16	8	11
-1	7	9	0.1	-4
15	10	-10	-6	-13
-7	2	0.3	5	12

▷ 정답: 42

∨ 0⊟

▶ 답:

해설 $\sqrt{0.4}$ $\sqrt{28}$ $\sqrt{0.01}$ $\sqrt{15}$ $\sqrt{-16}$ $\sqrt{13}$ $\sqrt{100}$ $\sqrt{18}$ $\sqrt{25}$ $\sqrt{-16}$ $\sqrt{0}$ $\sqrt{-0.9}$ $\sqrt{120}$ $\sqrt{36}$ $\sqrt{20}$ $\sqrt{49}$ $\sqrt{9}$ $\sqrt{81}$ $\sqrt{64}$ $\sqrt{0.09}$ $\sqrt{-9}$ $\sqrt{-36}$ $\sqrt{3}$ $\sqrt{4}$ $\sqrt{8}$ -5 6 0 25 -10 -0.3 16 8 11 -1 0.1 -4 7 9 15 10 -10-6-13-7 2 0.3 5 12

2. 다음 중 계산 한 값이 옳은 것은?

①
$$\sqrt{3^2} - \sqrt{(-5)^2} + \sqrt{2^2} = 10$$

② $\sqrt{(-2)^2} - (-\sqrt{3})^2 - \sqrt{5^2} = 0$

$$\sqrt{(2)^2}$$
 $\sqrt{9}$ $\sqrt{(6)^2}$ -

$$\sqrt{\left(\frac{2}{5}\right)^2 + \sqrt{\frac{9}{25}} - \sqrt{\left(\frac{6}{5}\right)^2} = -\frac{1}{5}$$

$$\sqrt{\left(\frac{2}{5}\right)^2 + \sqrt{\left(\frac{1}{2}\right)^2} + \sqrt{\left(-\frac{1}{2}\right)^2} = 0$$

①
$$\sqrt{3^2} - \sqrt{(-5)^2} + \sqrt{2^2} = 3 - 5 + 2 = 0$$

② $\sqrt{(-2)^2} - (-\sqrt{3})^2 - \sqrt{5^2} = 2 - 3 - 5 = -6$

①
$$\sqrt{2^2} \times \sqrt{\left(\frac{1}{2}\right)^2} + \sqrt{\left(-\frac{1}{2}\right)^2} = 2 \times \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$$
② $\sqrt{3^2} + \sqrt{4^2} - \sqrt{(-5)^2} = 3 + 4 - 5 = 2$

a의 값의 범위가 -2 < a < 2일 때, $\sqrt{(a-2)^2} - \sqrt{(a+2)^2}$ 의 식을 **3.** 간단히 하면?

 $\bigcirc -2a$ $\bigcirc 2a$

- ① 0 ② -2a-4 ③ -4

 $\sqrt{a^2} = \begin{cases} a \ge 0$ 일 때, a 이므로 a < 0일 때, -a 이므로 $\sqrt{(a-2)^2} - \sqrt{(a+2)^2} = -a + 2 - a - 2 = -2a$

① 1 ② 4 ③ 7 ④ 10 ⑤ 15

4. $\sqrt{40-x}$ 의 값이 자연수가 되도록 하는 가장 작은 자연수 x는?

 $\sqrt{36}$ 이므로 x = 4이다.

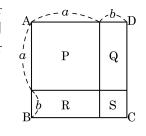
- 5. $2 \le \sqrt{2x} < 4$ 을 만족하는 자연수 x의 개수는?
 - ① 3 개 ② 4 개 ③ 5 개 ④ 6 개 ⑤ 7 개

 $2 \le \sqrt{2x} < 4$ 는 $4 \le 2x < 16$ 이다. 따라서 $2 \le x < 8$ 이므로 자연수 x 는 2, 3, 4, 5, 6, 7로 6개이다.

- $(\sqrt{5} + 2\sqrt{3})(2\sqrt{5} 3\sqrt{3})$ 을 계산하면? **6.**
 - ① $-8 15\sqrt{3} 4\sqrt{15}$
- ② $-8 15\sqrt{3} + 4\sqrt{15}$
- $3 8 + \sqrt{15}$ \bigcirc 8 - 15 $\sqrt{3}$ + 4 $\sqrt{15}$
- $4 8 15\sqrt{3}$

(준식) = $10 - 3\sqrt{15} + 4\sqrt{15} - 18$ $= -8 + \sqrt{15}$

7. 다음 그림에서 정사각형 ABCD 의 넓이는 사각형 P, Q, R, S 의 넓이의 합과 같다. 이 사실을 이용하여 나타낼 수 있는 곱셈 공식을 골라라.



- ② $(a-b)^2 = a^2 - 2ab + b^2$
- $(a+b)(a-b) = a^2 b^2$
- $(x + a)(x + b) = x^2 + (a + b)x + ab$
- $(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$
- 해설

정사각형 ABCD 의 넓이는 $(a+b)^2$ 이다. P+Q+R+S는 정사각형 ABCD 의 넓이와 같다.

 $P = a^2$, Q = ab, R = ab, $S = b^2$ 이다. 따라서 $(a+b)^2 = a^2 + 2ab + b^2$ 이다.

8.
$$\left(5a - \frac{1}{3}b\right)\left(5a + \frac{1}{3}b\right)$$
 를 전개하면?

①
$$5a^2 - \frac{1}{3}b^2$$
 ② $5a^2 - \frac{2}{3}b^2$ ③ $10a^2 - \frac{1}{9}b^2$
④ $25a^2 - \frac{2}{3}b^2$ ⑤ $25a^2 - \frac{1}{9}b^2$

해설
$$(5a)^2 - \left(\frac{1}{3}b\right)^2 = 25a^2 - \frac{1}{9}b^2$$

9. 다음 빈칸을 순서대로 채워 넣어라.

 $\sqrt{49}$ 의 양의 제곱근은 \square 이고, $(-5)^2$ 의 음의 제곱근은 \square

▶ 답:

▶ 답:

▷ 정답: √7 ▷ 정답: -5

해설

 $\sqrt{49}=7$ 이므로 7 의 양의 제곱근은 $\sqrt{7},\,(-5)^2=25$ 이므로 25

의 음의 제곱근은 -5 이다.

10. 18 에 자연수 a 를 곱하여 $\sqrt{18a}$ 가 자연수가 되도록 할 때, a의 값 중 가장 작은 수를 구하여라.

답:

➢ 정답: 2

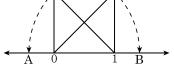
 $\sqrt{18a} = \sqrt{3 \times 3 \times 2 \times a} , a = 2$

11. 다음은 실수를 분류한 표이다. \Box 안에 들어갈 말로 바르게 짝지어진 것을 $\underline{\mathbf{PF}}$ 고르면? (정답 2개)



- ③ c. 무한소수 ④ c. 순환소수
- ① ㄱ. 비순환소수 ② ㄴ. 무리수
- ③ ㄹ. 무한소수

12. 다음 한 변의 길이가 1인 정사각형 에 대해 수직선에 대응하는 점 A, B 의 좌표가 각각 A(a), B(b)라고 할 때, a + b 의 값을 구하여라.



> 정답: a+b=1

▶ 답:

정사각형의 한 변의 길이가 1 이므로 대각선의 길이는 $\sqrt{2}$ 이다.

해설

그러므로 A $(1 - \sqrt{2})$, B $(\sqrt{2})$ 이다. $\therefore a = 1 - \sqrt{2}, \ b = \sqrt{2}, \ a + b = 1$

 ${f 13.}$ 다음은 $a=\sqrt{5}$ – 2 , $b=\sqrt{5}$ – $\sqrt{3}$ 의 대소를 비교하는 과정이다. \Box 안에 알맞은 부등호를 고르면? $a \square b$

① ≥ ② > ③ ≤ ④<

해설

2 는 $\sqrt{4}$ 이므로 a를 $\sqrt{5}$ – $\sqrt{4}$ 로 바꾸어 비교해 보면 된다. $a-b=\left(\sqrt{5}-2\right)-\left(\sqrt{5}-\sqrt{3}\right)=-2+\sqrt{3}=-\sqrt{4}+\sqrt{3}$ 이므로 $\therefore a-b<0$

14. 다음 표는 제곱근표의 일부분이다. 다음 중 주어진 표를 이용하여 그 값을 구할 수 있는 것은?

	수	0	1	2	3
	3.0	1.732	1.735	1.738	1.741
	3.1	1.761	1.764	1.766	1.769
	3.2	1.789	1.792	1.794	1.797
	3.3	1.817	1.819	1.822	1.825
•	3.4	1.844	1.847	1.849	1.852
,					

③ $\sqrt{3.14}$

① $\sqrt{3.60}$

 $2 \sqrt{3.45}$

 $\sqrt{3.14}$ $\sqrt{3.33} + \sqrt{3.15}$

 $\sqrt{3.11} - \sqrt{3.01}$

주어진 제곱근표로는 $\sqrt{3.60}$, $\sqrt{3.45}$, $\sqrt{3.14}$, $\sqrt{3.33}$ + $\sqrt{3.15}$ 의 값을 구할 수 없다.

해설

15. 가로의 길이가 4cm, 세로의 길이가 8cm 인 직사각형과 같은 넓이를 갖는 정사각형을 그리려고 한다. 이 때, 정사각형의 한 변의 길이를 구하라.

 $\underline{\mathrm{cm}}$

 ▷ 정답: 4√2 cm

_

(직사각형의 넓이)= 4 × 8 = 32(cm²)

▶ 답:

정사각형의 한 변의 길이가 x 일 때, $x^2 = 32$ $\therefore x = \sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}$ (cm) **16.** $(-3x+4)(5x-6) = ax^2 + bx + c$ 일 때, 상수 a, b, c 에 대하여 a+b-c 의 값을 구하여라.

▶ 답:

▷ 정답: 47

(-3x+4)(5x-6)

해설

 $= \{(-3) \times 5\} x^2 + \{(-3 \times -6) + (4 \times 5)\} x + 4 \times (-6)$ $= -15x^2 + 38x - 24$ $= ax^2 + bx + c$ 따라서 a = -15, b = 38, c = -24 이므로 a + b - c = 47 이다.

17. x(x-1)(x+1)(x-2)을 전개할 때, x^2 의 계수를 구하여라.

▶ 답:

▷ 정답: -1

해설

```
x(x-1)(x+1)(x-2)
```

 $= \{x(x-1)\}\{(x+1)(x-2)\}\$ $= (x^2 - x)(x^2 - x - 2)$ $= (x^2 - x)(x^2 - x - 2)$ $x^2 의 계수를 구해야 하므로 -2x^2 + x^2 = -x^2 에서 x^2 의 계수는$

-1이다.

18. 다음 두 수의 대소를 비교한 것 중 옳은 것은?

①
$$4 > \sqrt{3} + 2$$

③ $3 > \sqrt{13}$

②
$$\sqrt{11} - 3 > \sqrt{11} - \sqrt{8}$$

(5)
$$3 > \sqrt{13}$$

(5) $2 + \sqrt{2} > 2 + \sqrt{3}$

$$4 \sqrt{\frac{1}{2}} < \frac{1}{3}$$

①
$$4 - \sqrt{3} - 2 = 2 - \sqrt{3} > 0$$

 $\therefore 4 > \sqrt{3} + 2$

②
$$\sqrt{11} - 3 - (\sqrt{11} - \sqrt{8}) = -3 + \sqrt{8}$$

= $-\sqrt{9} + \sqrt{8} < 0$

(4) 양면을 제곱하면
$$(좌변) = \left(\sqrt{\frac{1}{2}}\right)^2 = \frac{1}{2}, \ (우변) = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$$

$$\therefore \quad \sqrt{\frac{1}{2}} > \frac{1}{3}$$

⑤
$$2 + \sqrt{2} - (2 + \sqrt{3}) = \sqrt{2} - \sqrt{3} < 0$$

∴ $2 + \sqrt{2} < 2 + \sqrt{3}$

19. 다음은 수직선을 보고 설명한 것이다. 다음 중 옳은 것은?

- ① √13 6 에 대응하는 점은 B 이다.
- ② 점 A 와 C 사이의 양의 정수는 세 개이다.
- ③ $-\sqrt{7}+5$ 는 $\frac{n}{m}$ 으로 나타낼 수 있다. ④ √5 + 1이 속하는 구간은 E 이다.
- ⑤ $\sqrt{2} 1$ 은 $1 \sqrt{2}$ 보다 왼쪽에 위치한다.

① $\sqrt{13}$ – 6 에 대응하는 점은 A 이다.

- ② 점 A 와 C 사이의 양의 정수는 없다. ③ 무리수는 $\frac{n}{m}$ 으로 나타낼 수 없다.
- ⑤ $\sqrt{2}$ 1 은 1 $\sqrt{2}$ 보다 오른쪽에 위치한다.

20. $(x-1)(x+1)(x^2+1)(x^4+1)(x^8+1)=x^a+b$ 일 때, 상수 a,b에 대하여 a-b의 값은?

① 7 ② 9 ③ 15 ④ 17

⑤ 25

 $(x-1)(x+1)(x^2+1)(x^4+1)(x^8+1)$ $= (x^2-1)(x^2+1)(x^4+1)(x^8+1)$ $= (x^4-1)(x^4+1)(x^8+1)$ $= (x^8-1)(x^8+1)$ $= x^{16}-1$

 $x^a + b = x^{16} - 1$ 이므로 a = 16, b = -1

해설

 $\therefore a - b = 17$

21. $(a+b+c)^2$ 을 전개하면?

- ① $a^2 + b^2 + c^2$
- ② $a^2 + b^2 + c^2 + ab + bc + ca$

$$a+b=t$$
라 하면

해설

$$(a+b+c)^2 =$$

$$(a+b+c)^{2} = (t+c)^{2}$$

$$= t^{2} + 2ct + c^{2}$$

$$= (a+b)^2 + 2c(a+b)^2$$

$$= a^2 + 2ab + b^2 + 2aa$$

$$= (a + b)^{2} + 2c(a + b) + c^{2}$$

$$= a^{2} + 2ab + b^{2} + 2ca + 2bc + c^{2}$$

$$= a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca$$

22. 다음중 곱셈 공식 $(x+a)(x+b) = x^2 + (a+b)x + ab$ 를 이용하면 계산하기에 가장 편리한 것은?

 $\textcircled{4} \ \ 37 \times 43$ $\textcircled{5} \ \ 51^2$

① 87^2

 $\bigcirc 51 \times 52 \qquad \qquad \boxed{3} \quad 13 \times 7$

 $51 \times 52 = (50+1)(50+2)$ $= 50^2 + (1+2) \times 50 + 1 \times 2$

해설

 ${f 23.}$ $\sqrt{5} imes 3\sqrt{a}=15$, $\sqrt{3} imes \sqrt{b}=6$, $\sqrt{2.43}=c\sqrt{3}$ 일 때, 유리수 a,b,c의 곱 *abc* 의 값은?

② 54 ③ $\frac{54}{5}$ ④ $3\sqrt{6}$ ⑤ 1 ① 60

 $3\sqrt{a} = \frac{15}{\sqrt{5}}, \sqrt{a} = \frac{15}{3\sqrt{5}} = \sqrt{5}$ $\therefore a = 5$ $\sqrt{b} = \frac{6}{\sqrt{3}} = 2\sqrt{3} = \sqrt{12}$ $\therefore b = 12$ $\sqrt{\frac{243}{100}} = \frac{9\sqrt{3}}{10} = c\sqrt{3}$

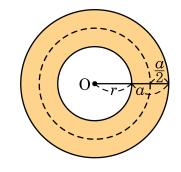
 $\therefore c = \frac{9}{10}$ $\therefore abc = 5 \times 12 \times \frac{9}{10} = 54$

24. $\sqrt{2} = x$, $\sqrt{3} = y$ 일 때, $\sqrt{5}$ 를 x 와 y 로 나타낸 것으로 옳은 것은?

① x+y ② x^2+y^2 ③ $\sqrt{x+y}$

$$\sqrt{5} = \sqrt{2+3} = \sqrt{\left(\sqrt{2}\right)^2 + \left(\sqrt{3}\right)^2} = \sqrt{x^2 + y^2}$$

25. 다음 그림에서 어두운 부분의 넓이를 a, b를 써서 나타내면? (단, b는 점선의 원주의 길이)



 \bigcirc ab \bigcirc 2 ab \bigcirc 3 πab \bigcirc 4 $2\pi ab$ \bigcirc 5 $\pi a^2 b^2$

$$b = 2\pi \left(r + \frac{a}{2} \right) = 2\pi r + \pi a = \pi (2r + a)$$

어두운 부분의 넓이를 S 라 하면
$$S = \pi (a + r)^2 - \pi r^2$$
$$= \pi (a^2 + 2ar + r^2 - r^2)$$

 $= \pi a(a+2r)$

 $= a\left\{\pi(a+2r)\right\}$ =ab