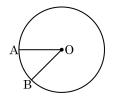

1. 다음 그림에 대한 설명으로 <u>틀린</u> 것은?

- ① 부채꼴 BOD 의 중심각은 ∠BOD 이다.
- 이다.
- ② 중심각 ∠DOE 에 대한 호는 5.0ptDE ③ \overline{AC} 와 \overline{DO} 는 원 O 의 현이다.
- ④ 원 O 의 반지름은 $\overline{\mathrm{OE}}$ 이다.
- ⑤ 원 O 의 지름은 BE 이다.



① ○ : 부채꼴 BOD 의 중심각은 ∠BOD <u>이</u>다.

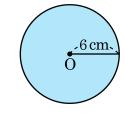
해설

- ② : 중심각 ∠DOE 에 대한 호는 5.0ptDE 이다.
- ③ x : \overline{AC} 는 원 O 의 현이지만 \overline{DO} 는 원 O 의 현이 아니다.
- 4 \bigcirc : 원 O 의 반지름은 \overline{OE} , \overline{OD} , \overline{OB} 이다. ⑤ ○ : 원 O 의 지름은 BE 이다.

2. 다음 $\angle AOB$ 를 3 배 증가 시켰다고 할 때 옳지 <u>않은</u> 것을 모두 고르면?

- ① 삼각형 AOB 의 넓이는 3배로 증가한다. ② 5.0ptAB 는 3배 증가한다.
- ④ $\overline{OA} = \overline{OB}$ 이다.
- ⑤ 전체 원의 넓이는 그대로이다.

① x : 부채꼴의 넓이와 중심각의 크기가 비례한다.


해설

② ○ : 호의 길이와 중심각의 크기는 비례한다. ③ x : OA 는 변하지 않는다.

④ ○ : ∠AOB 를 변화시켜도 반지름의 길이는 변하지 않는다.

⑤ ○ : 전체 원의 넓이는 변하지 않는다.

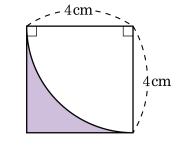
3. 반지름의 길이가 6cm 인 원의 둘레의 길이와 원의 넓이를 옳게 짝지은 것은?



- ① $10\pi \text{cm}, 36\pi \text{cm}^2$
- ② $10\pi \text{cm}, 34\pi \text{cm}^2$
- $311\pi \text{cm}, 36\pi \text{cm}^2$ $512\pi \text{cm}, 36\pi \text{cm}^2$
- (4) $12\pi \text{cm}, 34\pi \text{cm}^2$

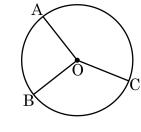
(원주) = $2\pi r = 2\pi \times 6 = 12\pi \text{(cm)}$

(넓이) = $\pi r^2 = \pi \times 6^2 = 36\pi \text{(cm}^2\text{)}$


지구가 반지름이 6400km 인 구라고 가정했을 4. 때, 지구의 북극에서 지구 표면을 따라 움직 여 지구의 적도까지 가장 짧은 거리를 구하여 라.

▶ 답: $\underline{\mathrm{km}}$ ▷ 정답: 3200π km

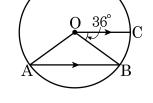
북극과 적도 사이의 각은 90°이므로 $6400 \times 2 \times \pi \times \frac{1}{4} = 3200\pi \text{ (km)}$


5. 다음 그림과 같은 도형에서 빗금 친 부분의 넓이는? (단, 단위는 생략

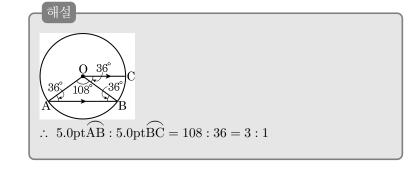
- ① $16 2\pi$ ② $16 4\pi$ ③ $20\pi 16$
- (4) $40\pi 16$ (5) $12 + 2\pi$

정사각형의 넓이에서 부채꼴의 넓이를 빼면 된다. $S = (4 \times 4) - \left(\pi \times 4^2 \times \frac{1}{4}\right) = 16 - 4\pi$

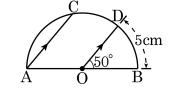
다음 그림의 원 O 에서 $5.0 pt \stackrel{\frown}{AB}: 5.0 pt \stackrel{\frown}{BC}: 5.0 pt \stackrel{\frown}{CA}=3:4:5$ 이다. $5.0 pt \stackrel{\frown}{AB}$ 에 대한 중심각의 크기를 구하여라. 6.


▷ 정답: 90°

답:

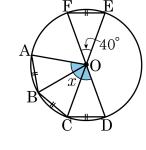

부채꼴의 호의 길이는 중심각의 크기에 정비례하므로 $\angle AOB = 360^{\circ} \times \frac{3}{12} = 90^{\circ}$ 이다.

7. 다음 그림에서 \overrightarrow{OC} // \overrightarrow{AB} , ∠BOC = 36° 일 때, 5.0pt \overrightarrow{AB} : 5.0pt \overrightarrow{BC} 의비는?


O 36°

① 2:1 ② 3:1 ③ 4:1 ④ 3:2 ⑤ 4:3

다음 그림의 반원 O 에서 $\overline{
m AC}\,/\!/\,\overline{
m OD}$, $m \angle DOB = 50^\circ$ 일 때, $m 5.0pt \widehat{
m AC}$ 8. 의 길이는?

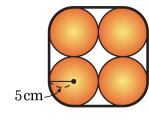


②8cm ① 6cm ③ 10cm ④ 12cm ⑤ 15cm

해설

점 O 에서 점 C 를 연결하면 $\triangle AOC$ 는 이등변삼각형이고 \overline{AC} $/\!/$ \overline{OD} 이므로 $\angle CAO$ = $\angle DOB$ = 50° 이고, $\angle AOC$ = 180° - 50° - 50° = 80° 이다. 따라서 50°: 80° = 5:5.0ptAC, 5.0ptAC = 8(cm) 이다.

9. 다음 그림과 같이 원 O 에서 $\overline{AB}=\overline{BC}=\overline{CD}=\overline{EF},$ $\angle EOF=40^{\circ}$ 일 때, x 의 값을 구하여라.

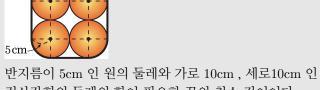


답:▷ 정답: 120°

 $\overline{AB} = \overline{BC} = \overline{CD} = \overline{EF}$ 이므로 $\angle EOF = \angle AOB = \angle BOC = \angle COD = 40^{\circ}$

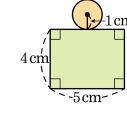
 $\therefore \ \angle x = 40^{\circ} + 40^{\circ} + 40^{\circ} = 120^{\circ}$

10. 반지름의 길이가 5cm 인 원판 4 개를 끈으로 묶으려고 한다. 이 때, 필요한 끈의 최소 길이는?(단, 매듭의 길이는 생각하지 않는다.)

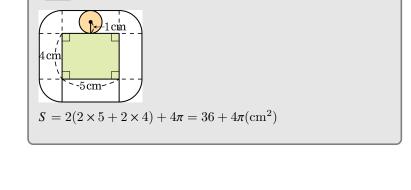


① $(5\pi + 20)$ cm ② $(5\pi + 30)$ cm $(4)(10\pi + 40)$ cm $(10\pi + 50)$ cm

 $3 (10\pi + 20) \text{cm}$


다음 그림과 같이 선을 그으면,

해설



정사각형의 둘레의 합이 필요한 끈의 최소 길이이다. 따라서 $2\pi \times 5 + 4 \times 10 = 10\pi + 40$ (cm)

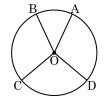
11. 다음 그림과 같이 가로의 길이가 5cm, 세로의 길이가 4cm 인 직사각형 주위를 반지름의 길이가 1cm 인 원이 돌고 있다. 이 원이 직사각형의 주위를 한 바퀴 돌았을 때, 이 원이 지나간 부분의 넓이는?

- ① $24 + 4\pi (\text{cm}^2)$ ② $24 + 6\pi (\text{cm}^2)$ ③ $36 + 4\pi (\text{cm}^2)$ ④ $36 + 6\pi (\text{cm}^2)$ ⑤ $48 + 6\pi (\text{cm}^2)$
- (00 + 00 (cm) (cm)

12. 넓이가 20π 이고 호의길이가 5π 인 부채꼴의 반지름의 길이를 구하여 라.

 답:

 ▷ 정답:
 8

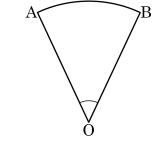

02.

 $\frac{1}{2} \times 5\pi \times r = 20\pi$

반지름의 길이를 r 이라 하면

따라서 r = 8이다.

. 다음 그림의 부채꼴에 대한 설명 중 옳지 <u>않은</u> 것



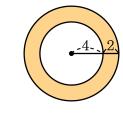
- $\angle AOB = \angle COD$ 이면 $5.0pt\widehat{AB} = 5.0pt\widehat{CD}$ 이다. $\angle AOB = \angle COD$ 이면 $\overline{AB} = \overline{CD}$ 이다.
- $\angle AOB = \angle COD$ 이면 부채꼴 OAB 의 넓이는 부채꼴 OCD 의
- 넓이와 같다. $2\angle AOB = \angle COD$ 이면 $25.0pt\widehat{AB} = 5.0pt\widehat{CD}$ 이다.
- $2\angle AOB = \angle COD$ 이면 $2\overline{AB} = \overline{CD}$ 이다.

$2\angle AOB = \angle COD$ 이면 $25.0 pt\widehat{AB} = 5.0 pt\widehat{CD}$, 현의 길이는

중심각의 크기에 정비례하지 않는다.

14. 부채꼴 OAB 에서 $5.0 ext{pt} \widehat{AB} = \overline{OA} = \overline{OB}$ 일 때의 중심각의 크기를 구하면?

 $5.0\mathrm{pt}\widehat{AB}=\overline{OA}=\overline{OB}$ 이므로 반지름과 호의 길이가 같은 부채

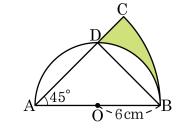

 $\widehat{\text{ODtAB}} = \overline{\text{OA}} = \overline{\text{OB}} = r$, 중심각을 x 라 하면 $2r\pi \times \frac{x}{360^{\circ}} = r$

양변에 180°를 곱하면

 $\pi rx = 180\,^{\circ}r$

 $\therefore x = \frac{180^{\circ}}{\pi}$

15. 다음 그림의 어두운 부분의 둘레의 길이 l 과 넓이 S 는?

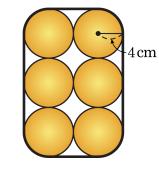

- ① $l = 12\pi, S = 18\pi$ $3 l = 20\pi, S = 20\pi$
- ② $l = 14\pi, S = 18\pi$
- ⑤ $l = 14\pi, S = 20\pi$
- (4) $l = 16\pi$, $S = 24\pi$

 $l = 2 \times 6 \times \pi + 2 \times 4 \times \pi = 12\pi + 8\pi = 20\pi$

해설

 $S = 6^2\pi - 4^2\pi = 36\pi - 16\pi = 20\pi$

16. 다음 그림과 같은 반지름의 길이가 6 cm 인 반원과 $\angle CAB = 45 ^{\circ}$ 인 부채꼴에서 색칠한 부분의 넓이는?


- $(9\pi + 18)$ cm² $(9\pi + 9)$ cm²
- $\bigcirc (9\pi 18) \text{cm}^2$ $\bigcirc (9\pi 16) \text{cm}^2$ $\bigcirc (9\pi + 12) \text{cm}^2$

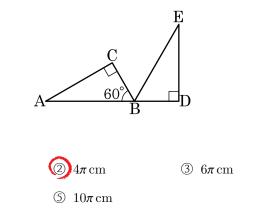
색칠한 부분의 넓이는

(부채꼴 CAB) – △DAO – (부채꼴 DOB) 이므로

 $\pi \times 12^2 \times \frac{1}{8} - 6 \times 6 \times \frac{1}{2} - \pi \times 6^2 \times \frac{1}{4} = 9\pi - 18 \text{ (cm}^2)$

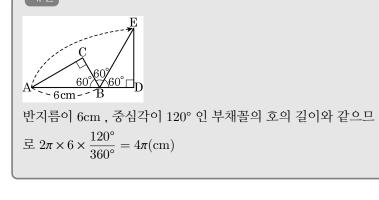
17. 다음 그림과 같이 반지름의 길이가 4cm 인 원기둥 6 개를 묶으려고 한다. 이때, 필요한 끈의 최소 길이는? (단, 매듭의 길이는 생각하지 않는다.)

- $8(\pi + 6)$ cm $4 32(\pi + 3)$ cm
- ⑤ $40(\pi + 3)$ cm
- ② $16(\pi + 3)$ cm ③ $16(\pi + 6)$ cm


해설

다음 그림과 같이 선을 그으면

형의 둘레의 합이 필요한 끈의 최소 길이이다. $\therefore 2 \times 4\pi + (16 + 8) \times 2 = 8\pi + 48 \text{(cm)}$


18. 다음 그림은 직각삼각형 ABC 를 점 B 을 중심으로 점 C 가 변 AB 의 연장선 위의 점 D 에 오도록 회전시킨 것이다. 점 A 가 움직인 거리는? (단, $\overline{AB} = 6 \, \mathrm{cm}$, $\overline{BC} = 3 \, \mathrm{cm}$)

 $4 8\pi \,\mathrm{cm}$

① 2π cm

해설

19. 다음과 같이 새롬이는 철수, 영희와 피자를 시켜먹었다. 피자의 한 판을 넓이의 비가 4:5:3인 부채꼴 모양으로 나누어 새롬, 철수, 영희가 차례대로 먹었다. 이때 새롬이가 먹은 피자 조각의 중심각의 크기를 구하여라.

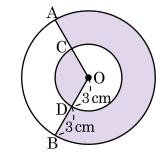
답:

➢ 정답: 120°

해설

새롬이가 먹은 피자 조각의 중심각의 크기는 $360^{\circ} \times \frac{4}{4+5+3} = 360^{\circ} \times \frac{1}{3} = 120^{\circ}$

41010

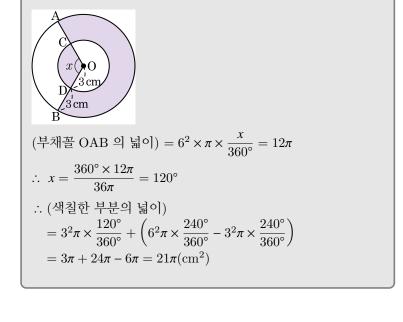

20. 다음 그림에서 6 개의 각의 크기는 모두 같다. 다음 중 옳은 것은?

- $\odot \overline{AC} > 2\overline{FG}$

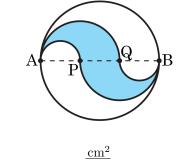
① 현의 길이는 중심각의 크기에 비례하지 않는다.

- $\ \, \Im\,\textstyle\frac{1}{2} 5.0 \mathrm{pt} 24.88 pt \widehat{\mathrm{ABE}} = 5.0 \mathrm{pt} 24.88 pt \widehat{\mathrm{EFG}}$
- 4 현의 길이는 중심각의 크기에 비례하지 않는다. (3) $\overline{AC} < 2\overline{FG}$

21. 다음의 그림에서 $\overline{\rm OD}=3{
m cm}$, $\overline{\rm BD}=3{
m cm}$ 이고, 부채꼴 OAB 의 넓이는 $12\pi{
m cm}^2$ 이다. 색칠한 부분의 넓이를 구하여라.



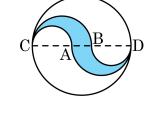
 $\underline{\mathrm{cm}^2}$


▷ 정답: 21π<u>cm²</u>

답:

해설

22. 다음 그림과 같이 지름이 18cm 인 원에서 점 P, Q 가 지름 AB 의 삼등분점일 때, 색칠한 부분의 넓이를 구하여라.


> 정답: 27π<u>cm²</u>

▶ 답:

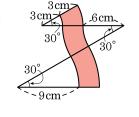
해설

 $\overline{AQ} = \overline{PB}$, $\overline{AP} = \overline{BQ}$ 이므로 색칠한 부분이 넓이는 \overline{AQ} 를

지름으로 하는 원에서 \overline{AP} 를 하는 원의 넓이를 뺀 것과 같다. : (색칠한 부분의 넓이) = $\pi \times 6^2 - \pi \times 3^2 = 27\pi (\text{ cm}^2)$ ${f 23}$. 다음 그림에서 큰 원의 지름 $\overline{
m CD}=10\,{
m cm}$ 이고 작은 원의 지름이 $\overline{AC} = \overline{BD} = 4 \, \mathrm{cm}$ 일 때, 색칠한 부분의 넓이를 구하여라.

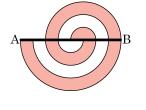
 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $5\pi \mathrm{cm}^2$


▶ 답:

해설

 $\overline{CA} = \overline{BD} = 4(cm)$


 $\overline{AB} = 10 - (4 + 4) = 2(cm)$ $\overline{CB} = \overline{AD} = 6(cm)$ $\therefore \pi \times 3^2 - \pi \times 2^2 = 9\pi - 4\pi = 5\pi(cm^2)$

- ${f 24}$. 다음 그림은 중심각의 크기가 모두 30° 인 부 채꼴로 만든 도형이다. 색칠한 부분의 넓이를 구하면?

 $(\pi \times 12^{2} - \pi \times 9^{2}) \times \frac{30^{\circ}}{360^{\circ}} + (\pi \times 9^{2} - \pi \times 6^{2}) \times \frac{30^{\circ}}{360^{\circ}} + (\pi \times 6^{2} - \pi \times 3^{2}) \times \frac{30^{\circ}}{360^{\circ}}$ $= \frac{45}{4}\pi \text{ (cm}^{2})$

25. 다음 그림은 길이가 16 cm 인 AB 를 8 등 분하여 반원을 그린 것이다. 색칠한 부분의 넓이를 구하여라.

▷ 정답: 32π <u>cm²</u>

답:

주어진 그림에서 $\overline{\mathrm{AB}}$ 의 윗부분을 아랫부분으로 옮기면 구하는

해설

넓이는 반지름이 8 cm 인 반원의 넓이와 같다.

 $\underline{\mathrm{cm}^2}$