- 1. 다음 자연수 중 소수가 <u>아닌</u> 것을 모두 고르면?
 - ① 1 ② 2 ③ 5 ④ 7 ⑤ 14

- ① 1 은 소수도 합성수도 아니다. ⑤ 14 는 합성수이다.

2. 다음 설명 중 옳은 것은?

- 소수는 약수의 개수가 2 개이다.소수는 모두 홀수이다.
- ③ 가장 작은 소수는 1 이다.
- ④ 모든 자연수는 약수의 개수가 2 개 이상이다.⑤ 자연수에는 소수와 합성수가 있다.

② 2 는 유일한 짝수인 소수이다.

해설

- ③ 가장 작은 소수는 2 이다. 1 은 소수가 아니다. ④ 1 은 약수의 개수가 1 개이다
- ④ 1 은 약수의 개수가 1 개이다.⑤ 자연수에는 소수와 합성수 그리고 1 이 있다.

3. 다음은 나예뻐가 넌멋져에게 보낸 암호문이다. 아래 네모 칸에 쓰여진 수 중에서 $2^4 \times 3^3$ 의 약수를 모두 찾아 색칠하면 나예뻐와 넌멋져가 만나는 시간이 나타난다. 나예뻐와 넌멋져가 몇 시에 만나는지 구하 여라.

2×3	12	$2^2 \times 3$
11	$2 \times 3^3 \times 5^2$	$2^4 \times 3^3$
$2^3 \times 3^2$	2×3^3	1
$3^2 \times 11$	100	2×3^2
8	$3^{^3}$	$2^3 \times 3$

<u>시</u> 답: ▷ 정답: 3

해설

 2^4 의 약수는 1 , 2 , 2^2 , 2^3 , 2^4 이고 3^3 의 약수는 1 , 3 , 3^2 , 3^3 이다. 표의 수들을 소인수분해하여 나타내면 $12 = 2^2 \times 3$, $8=2^3$, $100=2^2\times 5^2$ 이다. $2^4\times 3^3$ 의 약수를 모두 찾아 색칠하면 다음 표와 같다.

11	$2 \times 3^3 \times 5^2$	$2^4 \times 3^3$					
$2^3 \times 3^2$	2×3^3	1					
$3^2 \times 11$	100	2×3^2					
8	3^{3}	$2^3 \times 3$					
 따라서 나예뻐와 넌멋져가 만나는 시간은 3시이다.							

- **4.** 4 의 배수이면서 동시에 6 의 배수인 수가 <u>아닌</u> 것은?
 - ① 12 ② 24 ③ 40 ④ 108 ⑤ 120

해설

4 와 6 의 최소공배수인 12 의 배수가 아닌 수를 찾으면 된다.

5. 5 로 나누어도 3 이 남고, 6 으로 나누어도 3 이 남는 자연수 중 100이하의 자연수를 모두 구하여라.

▶ 답:

▶ 답:

▶ 답:

▷ 정답: 33 ▷ 정답: 63

▷ 정답: 93

해설

구하는 수는 5 , 6 의 공배수보다 3 만큼 큰 수 중 100 이하의

수이다. 이때, 5 , 6 의 최소공배수는 30 이므로 5 , 6 의 공배수는 30,60, · · · 이다. 따라서 구하는 수는 33,63,93 이다.

- 다음 중 옳지 <u>않은</u> 것을 모두 고르면?(정답 2 개) 6.
 - ① $2 \times 2 \times 4 \times 4 \times 7 = 2^2 \times 4^2 \times 7$

② $\frac{1}{3 \times 3 \times 3 \times 3} = \frac{1}{3^4}$, ④ $\frac{1}{3^2 \times 3^4} = \frac{1}{3^6}$

- **7.** 다음 중 소인수분해가 바르게 된 것을 <u>모두</u> 고르면?
 - $\bigcirc 72 = 2^3 \times 3^2$ $3 54 = 2^2 \times 3^2$
- ② $60 = 2^3 \times 3 \times 5$
- ⑤ $168 = 2^4 \times 7$
- $\boxed{4}108 = 2^2 \times 3^3$

해설

- ② $60 = 2^2 \times 3 \times 5$ $354 = 2 \times 3^3$
- ⑤ $168 = 2^3 \times 3 \times 7$

- 8. 120 에 자연수 x 를 곱하여 어떤 자연수의 제곱이 되게 하려고 한다. 다음 중 x 의 값이 될 수 $\underline{\text{없는}}$ 것은?
 - $\textcircled{4} \ 2 \times 3 \times 5 \times 7^2 \qquad \textcircled{5} \ 2^2 \times 3 \times 5$
- - ① $2 \times 3 \times 5$ ② $2^3 \times 3 \times 5$ ③ $2 \times 3^3 \times 5$

 $120 = 2^3 \times 3 \times 5$ 로 소인수분해되므로 소인수 2, 3, 5의 지수가

홀수인 수를 곱한다. $2^2 \times 3 \times 5$ 은 2^2 을 곱하였으므로 제곱수가 될 수 없다.

9. 288 을 어떤 수 x 로 나누어 자연수의 제곱이 되게 하려고 할 때, 가장 작은 자연수 x 를 구하면?

① 2 3 3 4 4 6 5 8

[해설]_ $288 = 2^5 \times 3^2$

가장 작은 자연수 x 는 2이다.

개수가 12 개인 가장 작은 수이다. 안에 알맞은 수는?
① 2 ② 3 ③ 5 ④ 7 ⑤ 11

해설 $2^2 \times a^n \times 7$ $(2+1) \times (n+1) \times (1+1) = 12 \therefore n=1$ 2를 제외한 가장 작은 소수는 3이므로 $3^1 = 3$

 $oldsymbol{10.}\ 2^2 imes$ $oldsymbol{ iny} imes$ 7 은 어떤 수를 소인수분해한 식이고 이 수는 약수의

- **11.** 두 수 $2^2 \times 3 \times 5$, $2^3 \times 3^2 \times 7$ 의 공약수의 개수는?
 - ① 1 개 ② 2 개 ③ 4 개 ④ 5 개 ⑤ 6 개

- 해설 - 다스 o

두 수 $2^2 \times 3 \times 5$, $2^3 \times 3^2 \times 7$ 의 최대공약수는 $2^2 \times 3$ 이므로 공약수의 개수는 $(2+1) \times (1+1) = 6$

- 12. 세 자연수 A, $2^3 \times 7$, $5^2 \times 7^2$ 의 최소공배수가 $2^3 \times 5^2 \times 7^2$ 일 때, A 값이 될 수 있는 한 자리의 자연수를 모두 더하면?
 - ① 23 ② 25 ③ 27 ④ 29 ⑤ 31

세 자연수 $A,~2^3 \times 7,~5^2 \times 7^2$ 의 최소공배수가 $2^3 \times 5^2 \times 7^2$ 이므로

해설

A 는 2, 5, 7을 소인수로 가질 수 있으며 각 소인수의 지수는 $2^3 \times 7$, $5^2 \times 7^2$ 의 소인수의 지수보다 작거나 같으면 된다. 따라서, A의 값이 될 수 있는 한 자리의 수는 1, 2, $2^2 (=4)$, 5, 7, $2^3 (=8)$ 이므로 이를 모두 더하면 1+2+4+5+7+8=27이다.

13. 어느 광장 분수대에는 물을 내뿜는 장치인 두 가지의 분수 노즐 A, B가 있다. 노즐 A = 35초 동안 내뿜다가 5초 동안 정지한 후 다시 내뿜고, 노즐 B는 50초 동안 내뿜다가 10초 동안 정지한 후 다시 내뿜는다. 두가지의 노즐이 동시에 물을 내뿜기 시작한 후, 그 다음에 처음으로 동시에 내뿜기 시작하는 때는 몇 초 후인지 구하여라.

▶ 답: 초후

정답: 120초후

노즐 A가 다시 내뿜을 때까지 걸리는 시간은 40초, 노즐 B가

해설

내뿜을 때까지 걸리는 시간은 60초이므로 A, B가 동시에 물을 내뿜기 시작하는 때는 40초와 60초의 최소공배수인 120초 후 이다.

14. 두 분수 $\frac{1}{12}$, $\frac{1}{18}$ 중 어느 것을 곱해도 자연수가 되는 가장 작은 자연수를 구하여라.

▷ 정답: 36

▶ 답:

구하는 수는 12 와 18 의 최소공배수이므로 36 이다.

- **15.** 54 와 72 의 공약수 중에서 3 의 배수인 약수를 a 개라 할 때 a 의 약수의 개수는?

① 2 ②3 ③ 6 ④ 7 ⑤ 8

해설

최대공약수: 18 18 의 약수는 $1,\ 2,\ 3,\ 6,\ 9,\ 18$ 이므로 3 의 배수인 약수는 4

개이다. 4 를 a 라 할 때 a의 약수의 개수는 $2^2=(2+1)=3$

16. $6 \times x$, $8 \times x$, $10 \times x$ 의 최소공배수가 720 이라고 할 때, x 의 값은 얼마인가? (단, x 는 한 자리의 자연수이다.)

①6 ② 7 ③ 8 ④ 9 ⑤ 10

 $2 \times 3 \times x$, $2^3 \times x$, $2 \times 5 \times x$ 의 최소공배수는 $2^3 \times 3 \times 5 \times x = 720 = 2^4 \times 3^2 \times 5$ 이다.

 $\therefore x = 2 \times 3 = 6$

- 17. 가로, 세로의 길이가 각각 60 cm , 84 cm 인 직사각형 모양의 옷감을 똑같은 크기의 정사각형으로 자르려고 한다. 가능한 한 큰 정사각형으로 자르려 한다면 처음의 옷감은 몇 개로 나누어지겠는가?
 - ① 21 개 ② 24 개 ③ 30 개 ④ 35 개 ⑤ 38 개

해설

가장 큰 정사각형의 한 변의 길이는 60, 84 의 최대공약수이다. $60=2^2\times3\times5$, $84=2^2\times3\times7$ 의 최대공약수는 $2^2\times3=12$ 따라서 나누어지는 개수는 $(60\div12)\times(84\div12)=35(개)$ 이다.

① 16 ② 18 ③ 24 **4**32 **5**48 96 과 64 의 최대공약수이므로 32

18. 어떤 자연수로 100 을 나누면 4 가 남고, 70 을 나누면 6 이 남는다고

한다. 이러한 자연수 중에서 가장 큰 자연수를 구하면?

19. 두 수 $3^2 \times 5$, A 의 최대공약수가 3×5 , 최소공배수가 $2 \times 3^2 \times 5 \times 7$ 일 때, A 를 구하여라.

답:

➢ 정답: 210

 $\overline{}$ 두 수 A, B 의 최대공약수를 G, 최소공배수를 L 이라 하면

 $A \times B = L \times G$ 이므로 $(3^2 \times 5) \times A = (3 \times 5) \times (2 \times 3^2 \times 5 \times 7) = 2 \times 3^3 \times 5^2 \times 7$ 이다. $\therefore A = 2 \times 3 \times 5 \times 7 = 210$

.. 1 – 2 × 0 × 0 × 1 – 210

- **20.** $\frac{24}{n}$ 와 $\frac{40}{n}$ 을 자연수로 만드는 자연수 n 들을 모두 합하면?
- ① 8 ② 12 ③ 15 ④ 20 ⑤ 25

n 은 24, 40 의 공약수이고, 공약수는 최대공약수의 약수이다. 24 와 40 의 최대공약수는 8 이고, 8 의 약수는 1, 2, 4, 8 이므로 따라서 합은 1+2+4+8=15 이다.

21. 옛날부터 우리나라에는 십간(⋈⋈)과 십이지(⋈⋈⋈)를 이용하여 매 해에 이름을 붙였다. 십간과 십이지를 차례대로 짝지으면 다음과 같이 그 해의 이름을 만들 수 있다. 다음 표에서 알 수 있듯이 2010 년은 경인년이다. 다음 중 경인년이 <u>아닌</u> 해는?

____ | 변 | 저 | 무 | 기 | 경 | 시 | 인 | 계

75	′∂'	Ť	/	∕ō	- 신	H	셰
자	축	인	묘	진	사	오	ㅁ
병자	정축	무인	기묘	경진	신사	임오	계미
1996	1997	1998	1999	2000	2001	2002	2003
갑	을	병	정	무	기	경	
신	유	술	해	자	축	인	
갑신	을유	병술	정해	무자	기축	경인	
2004	2005	2006	2007	2008	2009	2010	
						•	-

③ 1950년

④ 2070년 ⑤ 2110년

② 1890년

십간(☒☒)의 10 가지와 십이지(☒☒☒)의 12 가지를 계속 돌아가면서 조합이 이루어지므로 같은 이름의 년도는 60 년 만에

해설

① 1830년

한 번씩 돌아오게 된다. 따라서 2010 년이 경인년이면 1830 년, 1890 년, 1950 년, 2070 년도 경인년이다.

- **22.** $n=4p^2q^3$ 일 때, n 의 약수의 개수를 구하여라. (단, $p\neq q\neq 2$ 인 소수)
 - <u>개</u>

▷ 정답: 36<u>개</u>

n 을 소인수분해하면 $n=4p^2q^3=2^2 imes p^2 imes q^3$ 이다.

해설

따라서 약수의 개수는 $(2+1) \times (2+1) \times (3+1) = 36$ (개)이다.

23. 100 과 서로소인 두 자리 자연수의 개수를 구하여라.

<u>개</u>

▷ 정답: 36<u>개</u>

해설 $100 = 2^2 \times 5^2$

→ 100 과 서로소인 수는 2 의 배수가 아니고, 5 의 배수가 아니

어야 한다. 두 자리 자연수의 개수는 90개이고,

두 자리 자연수 중 2의 배수는 45개이고, 두 자리 자연수 중 5의 배수는 18개이고

두 자리 자연수 중 5의 배수는 18개이고, 두 자리 자연수 중 10의 배수는 9개이다.

100 과 서로소인 두 자리 자연수의 개수= 90 - 45 - 18 + 9 = 36

24. 108, 135 의 최대공약수는?

① 2^2 ② 3^3 ③ 2^3 ④ 3×5 ⑤ $2^2 \times 3^2$

108 = $2^2 \times 3^3$, $135 = 3^3 \times 5$ 이므로 최대공약수는 3^3

25. 어떤 공장의 한 기계에 세 톱니바퀴 A, B, C 가 서로 맞물려 있다. 톱니바퀴 A, B, C 의 톱니 수는 각각 24, 18, 36 개이다. 이때, 세 톱니바퀴가 회전하여 다시 원위치에 오는 세 톱니바퀴의 회전수를 각각 a, b, c 라 할 때, a+b+c 의 값을 구하여라.

▶ 답:

▷ 정답: 9

해설 24 와 18, 36 의 최소공배수에 처음으로 다시 맞물린다.

 $24 = 2^3 \times 3$, $18 = 2 \times 3^2$, $36 = 2^2 \times 3^2$ 최소공배수는 $2^3 \times 3^2 = 72$

톱니바퀴 $A 는 72 \div 24 = 3(바퀴) = a$

톱니바퀴 $B \leftarrow 72 \div 18 = 4(바퀴) = b$

 $\therefore a + b + c = 3 + 4 + 2 = 9$

톱니바퀴 C 는 $72 \div 36 = 2(바퀴) = c$ 이다.