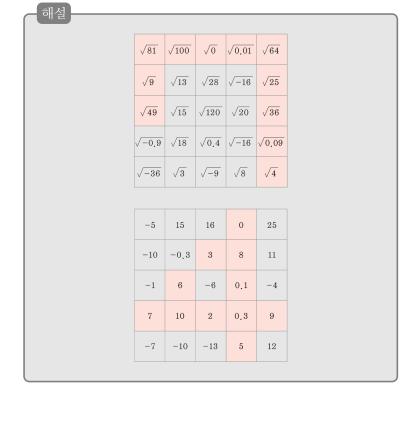
1. 다음 표의 수 중 근호를 사용하지 않고 나타낼 수 있는 수들을 찾아 색칠한 후 이 수들이 나타내는 수를 아래쪽에 색칠하였을 때 두 그림이 나타내는 수를 말하여라.


√81	$\sqrt{100}$	$\sqrt{0}$	$\sqrt{0.01}$	$\sqrt{64}$
$\sqrt{9}$	$\sqrt{13}$	$\sqrt{28}$	√-16	$\sqrt{25}$
$\sqrt{49}$	$\sqrt{15}$	$\sqrt{120}$	$\sqrt{20}$	$\sqrt{36}$
V-0.9	$\sqrt{18}$	$\sqrt{0.4}$	√ -16	√0.09
$\sqrt{-36}$	$\sqrt{3}$	√ -9	√8	$\sqrt{4}$

-10	-0.3	3	8	11
-1	6	-6	0.1	-4
7	10	2	0.3	9
-7	-10	-13	5	12

 -5
 15
 16
 0
 25

▷ 정답: 74

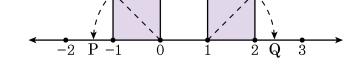
▶ 답:

2.
$$\sqrt{(2-\sqrt{5})^2} + \sqrt{(2+\sqrt{5})^2}$$
 의 식을 간단히 하면?

① $\sqrt{5}$ ② 0 ③ $2\sqrt{5}$

4 5 $2\sqrt{5}+4$

 $\sqrt{5} > 2$ 이므로 $\sqrt{(2-\sqrt{5})^2} + \sqrt{(2+\sqrt{5})^2} = -2 + \sqrt{5} + 2 + \sqrt{5}$ $=2\sqrt{5}$


3. $\sqrt{x} < 3$ 인 자연수 x 는 몇 개인가?

① 2개 ② 4개 ③ 8개 ④ 10개 ⑤ 12개

 $\sqrt{x} < \sqrt{9}$ 에서 x < 9

따라서 9 보다 작은 자연수는 1,2,3,4,5,6,7,8의 8개이다.

4. 다음 그림에서 수직선 위의 사각형은 정사각형이다. 이 때, 점 $P(a),\ Q(b)$ 에서 a+b 의 값을 구하여라.

답:▷ 정답: a+b=1

 $P(-\sqrt{2})$, $Q(1+\sqrt{2})$ 이므로 $a+b=-\sqrt{2}+1+\sqrt{2}=1$

해설

다음 중 두 실수의 대소 관계가 옳지 <u>않은</u> 것은? **5.**

 \bigcirc $\sqrt{21} + 3 < \sqrt{19} - 4$

 \bigcirc $\sqrt{19} - \sqrt{5} > \sqrt{15} - \sqrt{7}$

© $\sqrt{15} + 3 > \sqrt{15} + 2$

④ ∟,□

⑤ ⑦,₾,⊜

2 (3 (),(

 \bigcirc $\sqrt{21} + 3 - (\sqrt{19} - 4) = \sqrt{21} - \sqrt{19} + 7 > 0$

해설

 $\therefore \sqrt{21} + 3 > \sqrt{19} - 4$

 $\therefore \sqrt{19} - \sqrt{5} > \sqrt{15} - \sqrt{7}$

- 6. 다음 중 그 값이 다른 것을 고르면?

 - ② 7 의 제곱근
 ③ √7² 의 제곱근
 - ④ (-√7)² 의 제곱근
 - ④ $(-\sqrt{7})^2$ 의 세급근 ⑤ $x^2 = 7$ 을 만족시키는 수 x

② 7 의 제곱근: ±√7

해설

- ③ $\sqrt{7^2} = 7$ 의 제곱근: $\pm \sqrt{7}$
- ④ $(-\sqrt{7})^2 = 7$ 의 제곱근: $\pm \sqrt{7}$ ⑤ $x^2 = 7$ 을 만족시키는 수 $x = \pm \sqrt{7}$

- 7. 제곱근 $81 \, \oplus A$, $81 \, \cap \, A = 1$ 의 제곱근을 $B \, \cap \, A = 1$ 한 때, $A + B \, \cap \, A = 1$ 자을 구하여라.
 - ▶ 답:

▷ 정답: A + B = 0

(제곱근 81)= $\sqrt{81} = 9$, A = 9 이고,

해설

(81 의 음의 제곱근)= $-\sqrt{81} = -9$, B = -9 이다. 따라서 A + B = 9 + (-9) = 0 이다. 8. a > 0 일 때, $-\sqrt{(-5a)^2}$ 을 간단히 나타내어라.

▶ 답:

> 정답: -5a

 $-\sqrt{(-5a)^2} = -\sqrt{25a^2} = -(5a) = -5a$

9. a > 0 일 때, $-\sqrt{(-5a)^2} + \sqrt{16a^2}$ 을 간단히 하여라.

답:

> 정답: -a

 $-\sqrt{(-5a)^2} + \sqrt{16a^2} = -\sqrt{25a^2} + |4a| = -|5a| + |4a| = -a$

10.
$$\sqrt{(2-\sqrt{2})^2} - \sqrt{(1-\sqrt{2})^2}$$
 을 간단히 하면?

① 1 ② -1 ③ $3 - 2\sqrt{2}$ ④ $-3 + 2\sqrt{2}$ ⑤ $1 - 2\sqrt{3}$

 $1 < \sqrt{2} < 2$ 이므로 $2 - \sqrt{2} > 0$, $1 - \sqrt{2} < 0$ $\left| 2 - \sqrt{2} \right| - \left| 1 - \sqrt{2} \right| = 2 - \sqrt{2} + 1 - \sqrt{2}$ $= 3 - 2\sqrt{2}$

11. 다음 중 유리수인 것을 모두 고르면? (정답 2개)

① π

② $\sqrt{1.21}$

 $3\sqrt{0.1}$

 $\textcircled{4} \ \ 0.01001000100001...$

③0.121

① π 는 순환하지 않는 무한소수이다.(무리수이다.)

- ② $\sqrt{1.21} = \frac{11}{10}$ 의 분수꼴로 나타낼 수 있기 때문에 유리수이다. ③ $\sqrt{0.1}$ 는 순환하지 않는 무한소수이다.(무리수이다.)
- ④ 0.01001000100001... 비순환소수다.(무리수이다.)
- ⑤ $0.\dot{1}2\dot{1} = \frac{121}{900}$ 의 분수꼴로 나타낼 수 있기 때문에 유리수이다.

12. 다음 설명 중 <u>옳은</u> 것은?

- 유리수는 조밀하여 수직선을 빈틈없이 메운다.
 서로 다른 두 유리수 사이에는 무리수가 없다.
- ③ 서로 다른 두 무리수 사이에는 유리수가 없다.
- ④ 수직선은 유리수와 무리수로 완전히 메워진다.
- ⑤ 수직선은 무리수로 완전히 채울 수 있다.

①, ② 서로 다른 유리수와 유리수 사이에는 무한히 많은 유리수

해설

- 와 무리수가 있다. ③ 서로 다른 무리수와 무리수 사이에는 무수히 많은 유리수와
- 무리수가 있다. ⑤ 수직선은 유리수와 무리수로 완전히 메워진다.

13.
$$\frac{10^8}{20^4} = \sqrt{25^a}$$
, $\sqrt{\frac{6^{10}}{6^4}} = 6^b$ 일 때, $a+b$ 의 값을 구하여라.

▶ 답:

▷ 정답: a+b=7

해설
$$\frac{10^8}{20^4} = \frac{10^8}{2^4 \times 10^4} = \frac{10^4}{2^4} = 5^4 = \sqrt{25^4}, \ a = 4$$

$$\sqrt{\frac{6^{10}}{6^4}} = \sqrt{6^6} = 6^3, \ b = 3$$

$$\therefore a + b = 4 + 3 = 7$$

14. 다음 식이 모두 자연수가 되게 하는 자연수 x의 최솟값을 구하고 그 자연수 y 를 각각 구하여라.

	자연수 x 의 최솟값	у
$y = \sqrt{270x}$	\bigcirc	(L)
$n = \sqrt{\frac{120}{x}}$	©	2

▶ 답: 답:

답:

답:

▷ 정답: ⑤= 30 ▷ 정답: □= 90

▷ 정답: ©= 30

▷ 정답 : ②= 2

① $270x = 2 \times 3^3 \times 5 \times x$ 이므로 $x = 2 \times 3 \times 5 = 30$ 이다. ① 따라서 $y = \sqrt{270 \times 30} = 90$ 이다. © $\frac{120}{x} = \frac{2^3 \times 3 \times 5}{x}$ 이므로 $x = 2 \times 3 \times 5 = 30$ 이다.

(2) 따라서 $y = \sqrt{\frac{120}{30}} = 2$ 이다.

- **15.** 다음 5 개의 수 A, B, C, D, E 가 정수가 되는 수 중 가장 작은 자연수를 a, b, c, d, e 라 한다. 다음 중 <u>옳은</u> 것은?
 - $A = \sqrt{4+a}$, $B = \sqrt{5^2 + b}$ $C = \sqrt{5^2 \times 3^3 \times c}$, $D = \sqrt{160 + 2d}$
 - ① a < b < c < d ② a < c < b < d ③ b < a < d < c
 - $\textcircled{4} \quad c < d < a < b \qquad \textcircled{5} \quad c < a < b < d$

정수가 되려면 근호 안의 수가 제곱수가 되어야 한다.

해설

A 에서 4+a=9 일 때 a 가 가장 작은 수이면서 제곱수를 만든다. a=5

∴ *a* = 5 *B* 에서 5² + *b* = 36 일 때 *b* 가 가장 작은 수이면서 제곱수를

만든다. ∴ b = 11

...b-11C 에서 $5^2 \times 3^3 \times c$ 가 제곱수가 되려면 가장 작은 수는 c=3 일

때 이다. D 에서 $160 + 2d = 196 (= 14^2)$ 일 때 d 가 가장 작은 수이면서

근호 안이 제곱수가 된다. ∴ d = 18

 $\therefore c < a < b < d$

16. $\sqrt{50-x}$ 의 값이 자연수가 되도록 하는 가장 작은 자연수 x 는?

레싱

① 1 ② 3 ③ 5 ④ 10 ⑤ 14

 $\sqrt{49}$ 이므로 x=1 이다.

17. 다음 무리수 중 가장 작은 것은?

① $2\sqrt{7}$ ② $3\sqrt{6}$ ③ $4\sqrt{5}$ ④ $5\sqrt{4}$ ⑤ $6\sqrt{2}$

해설

① $\sqrt{28}$, ② $\sqrt{54}$, ③ $\sqrt{80}$, ④ $\sqrt{100}$, ⑤ $\sqrt{72}$ 이므로 가장 작은 것은 ①이다.

18. 다음 식을 만족하는 x의 값 중에서 유리수가 <u>아닌</u> 것을 고르면?

- ① $\frac{\sqrt{x}}{3} = \frac{1}{6}$ ② $\sqrt{2x} = 4$ ③ $\frac{x^2}{6} = \frac{1}{3}$ ④ 2x + 1 = 1 ⑤ 2x 1 = 0.7

③
$$\frac{x^2}{6} = \frac{1}{3}$$
 이면 $x^2 = 2$
 $\therefore x = \pm \sqrt{2}$ 이다.

19. 다음 중 각 식을 만족하는 x 의 값이 무리수인 것을 $\underline{\mathsf{PF}}$ 고르면?

(a) $x^2 = \frac{8}{49}$ (b) $x^2 = 7$

(3) (2), (1) $\textcircled{1} \ \textcircled{9,0} \qquad \textcircled{2} \ \textcircled{0,0} \qquad \textcircled{3} \ \textcircled{6,0} \qquad \textcircled{4} \ \textcircled{6,0}$

20. 다음 중 무리수는 모두 몇 개인가?

 $\sqrt{121}$, $\frac{\sqrt{12}}{2}$, $-\frac{\pi}{2}$, $\sqrt{0.04}$, $\sqrt{3}-2$

① 1 <u>개</u> ② 2 <u>개</u> ③ 3 <u>개</u> ④ 4 <u>개</u> ⑤ 5 <u>개</u>

 $\sqrt{121} = 11$, $\sqrt{0.04} = 0.2$: 유리수 $\frac{\sqrt{12}}{2}$, $-\frac{\pi}{2}$, $\sqrt{3} - 2$: 무리수

21. 다음 중 옳은 것은?

해설

- 무한소수는 무리수이다.
 유리수는 유한소수이다.
- ③ 순환소수는 유리수이다.
- ④ 유리수가 되는 무리수도 있다.⑤ 근호로 나타내어진 수는 무리수이다.

① 무한소수 중 순환하는 소수는 유리수이다. ② 유리수 중에는 유한소수도 있고, 무한소수(순환소수)도 있다.

- ④ 유리수이면서 무리수가 되는 수는 없다.
- ⑤ $\sqrt{4}$, $\sqrt{9}$ 같은 수는 근호로 나타내었어도 유리수이다.

22. 다음 중 항상 성립하는 것은?

- ① (무리수) + (유리수) = (무리수) ② (무리수) + (무리수) = (무리수)
- ③ (무리수) × (무리수) = (무리수)
- ④ (무리수) ÷ (무리수) = (무리수)
- ⑤ (유리수) x (무리수) = (무리수)

② $\sqrt{2} + (-\sqrt{2}) = 0$: 유리수

해설

- ③ $\sqrt{2} \times \sqrt{2} = 2$: 유리수 ④ $\sqrt{2} \div \sqrt{2} = 1$: 유리수
- ④ $\sqrt{2} \div \sqrt{2} = 1$: 유리수 ⑤ $0 \times \sqrt{2} = 0$: 유리수

23. 다음 설명 중 옳지 <u>않은</u> 것을 모두 고르면?

- ① 두 유리수 $\frac{1}{5}$ 과 $\frac{1}{3}$ 사이에는 무수히 많은 유리수가 있다. ② 두 무리수 $\sqrt{5}$ 와 $\sqrt{6}$ 사이에는 무수히 많은 무리수가 있다.
- ③ $\sqrt{5}$ 에 가장 가까운 유리수는 2 이다.
- ④ 서로 다른 두 유리수의 합은 반드시 유리수이지만, 서로 다른 두 무리수의 합 또한 반드시 무리수이다. ⑤ 실수와 수직선 위의 점 사이에는 일대일 대응이 이루어진다.

③ $\sqrt{4}$ 와 $\sqrt{5}$ 사이에는 무수히 많은 유리수가 존재 한다.

- ④ 두 무리수를 더해 유리수가 될 수도 있다.
- 예) $\sqrt{2} + (-\sqrt{2}) = 0$

24. 다음 세 수를 큰 수부터 차례로 나열한 것으로 옳은 것은?

$$\frac{\sqrt{3}}{6}$$
, $\sqrt{\frac{3}{121}}$, $\sqrt{0.75}$

- ① $\sqrt{\frac{3}{121}}$, $\sqrt{0.75}$, $\frac{\sqrt{3}}{6}$ ② $\frac{\sqrt{3}}{6}$, $\sqrt{0.75}$, $\sqrt{\frac{3}{121}}$ ③ $\frac{\sqrt{3}}{6}$, $\sqrt{\frac{3}{121}}$, $\sqrt{0.75}$ ④ $\sqrt{0.75}$, $\sqrt{\frac{3}{6}}$, $\sqrt{\frac{3}{121}}$ ⑤ $\sqrt{0.75}$, $\sqrt{\frac{3}{121}}$, $\frac{\sqrt{3}}{6}$
- $\sqrt{\frac{3}{121}} = \sqrt{\frac{3}{11^2}} = \frac{\sqrt{3}}{11} ,$ $\sqrt{0.75} = \sqrt{\frac{75}{100}} = \sqrt{\frac{5^2 \times 3}{10^2}} = \frac{5\sqrt{3}}{10} = \frac{\sqrt{3}}{2} ,$ $\frac{\sqrt{3}}{2} > \frac{\sqrt{3}}{6} > \frac{\sqrt{3}}{11}$

25. 다음 수들이 위치하는 구간과 바르게 연결되지 <u>않은</u> 것은?

① $1 - \sqrt{2}$: B ② $1 + \sqrt{2}$: E ③ $2 + \sqrt{5}$: G (4) $2 - \sqrt{3}$: C (5) $\sqrt{5} - 4$: D

① $-\sqrt{4} < -\sqrt{2} < -\sqrt{1}$

해설

 $1 - \sqrt{4} < 1 - \sqrt{2} < 1 - \sqrt{1}$ ∴ $-1 < 1 - \sqrt{2} < 0$: B

② $\sqrt{1} < \sqrt{2} < \sqrt{4}$

 $1 + \sqrt{1} < 1 + \sqrt{2} < 1 + \sqrt{4}$ $\therefore 2 < 1 + \sqrt{2} < 3 : E$

③ $\sqrt{4} < \sqrt{5} < \sqrt{9}$

 $2 + \sqrt{4} < 2 + \sqrt{5} < 2 + \sqrt{9}$ $\therefore 4 < 2 + \sqrt{5} < 5 : G$

 $\textcircled{4} - \sqrt{4} < -\sqrt{3} < -\sqrt{1}$ 2 - $\sqrt{4} < 2 - \sqrt{3} < 2 - \sqrt{1}$

 $0 < 2 - \sqrt{3} < 1 : C$

 $\sqrt{4} - 4 < \sqrt{5} - 4 < \sqrt{9} - 4$

 $\therefore -2 < \sqrt{5} - 4 < -1 : A$