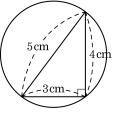
1. 다음 그림과 같이 직각삼각형 모양에 9 모양 의 테두리를 두르려고 한다. 테두리를 둘렀을 때, 원의 넓이를 구하여라.



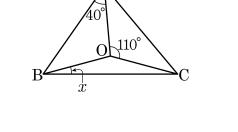
 $\underline{\mathrm{cm}^2}$ ightharpoonup 정답: $6.25\pi ext{cm}^2$

▶ 답:

직각삼각형이므로 빗변의 중심에 외심이 있다. 그러므로 원의

해설

반지름은 2.5 cm 이다. 따라서 원의 넓이는 $\pi(2.5\,\mathrm{cm})^2=6.25\pi(\,\mathrm{cm}^2)$ 이다. **2.** 다음 \triangle ABC 의 외심을 O 라고 할 때, $\angle x$ 의 크기는?



① 10°

(2)1

③ 20°

4 25°

⑤ 30°

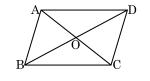
 $\triangle AOC$ 에서 $\angle OAC = \angle OCA$, $\angle AOC + \angle OAC + \angle OCA = 180^{\circ}$

, $\angle OCA = 35^{\circ}$ $\angle OAB + \angle OCA + \angle x = 90^{\circ}$, $\angle x = 90^{\circ} - 40^{\circ} - 35^{\circ} = 15^{\circ}$

- 3. 다음 중 평행사변형에 대한 설명으로 옳은 것은?
 - 네 변의 길이가 같다.
 두 대각선은 서로 수직한다.
 - ③ 두 대각선은 길이가 같다.
 - ④ 이웃하는 두 각의 크기가 같다.
 - ⑤ 두 쌍의 대변이 각각 평행하다.

평행사변형은 두 쌍의 대변이 각각 평행한 사각형이다.

4. 다음 그림의 □ABCD가 평행사변형이 되기 위한 조건으로 옳은 것을 보기에서 모두 골 라라.



- \bigcirc $\angle A = 130^{\circ}, \angle B = 50^{\circ}, \angle C = 130^{\circ}$
- \bigcirc $\overline{AB} / / \overline{DC}, \overline{AD} / / \overline{BC}$
- \bigcirc $\overline{AD} // \overline{BC}, \overline{AB} = \overline{AD} = 7 \text{ cm}$
- (단, O는 두 대각선의 교점이다.)

▶ 답:

▶ 답:

▶ 답:

▷ 정답: Э

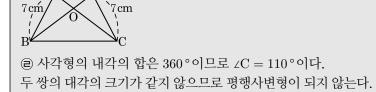
▷ 정답: □

▷ 정답: □

해설 ⑤ 사각형의 내각의 합은 $360\,^{\circ}$ 이므로 $\angle D=50\,^{\circ}$

ℂ 두 쌍의 대변이 각각 평행하므로 평행사변형이 된다. ⓒ (반례) 등변사다리꼴

따라서 두 쌍의 대각의 크기가 같으므로 평행사변형이 된다.



◎ 두 대각선이 서로 다른 것을 이등분하므로 평행사변형이 된다.

- 5. 0 부터 5 까지의 숫자가 적힌 6 장의 카드 중에서 3 장을 뽑아 만들 수 있는 세 자리 정수는 모두 몇 가지인가?

 - ① 48 가지 ② 60 가지
- ③100 가지

해설

④ 120 가지 ⑤ 150 가지

백의 자리에는 0 이 올 수 없으므로 $1\sim5$ 중 1 장을 선택,

따라서 $5 \times 5 \times 4 = 100$ (가지)

6. 두 개의 동전을 동시에 던질 때, 앞면이 한 개 나올 확률을 구하여라.

답:

ightharpoonup 정답: $rac{1}{2}$

(앞, 뒤), (뒤, 앞)이므로 2 가지 따라서 (확률)= $\frac{2}{4} = \frac{1}{2}$ 이다.

4 2

- 7. 어떤 시험에서 A가 합격할 확률은 $\frac{3}{7}$ 이고 B가 불합격할 확률은 $\frac{1}{3}$ 일 때, 그 시험에서 A, B가 모두 합격할 확률을 구하여라. ▶ 답:

ightharpoonup 정답: $\frac{2}{7}$

B가 불합격할 확률이 $\frac{1}{3}$ 이므로 합격할 확률은 $\frac{2}{3}$ 이다. 따라서 A, B 모두가 합격할 확률은 $\frac{3}{7} \times \frac{2}{3} = \frac{2}{7}$

- 다음 그림과 같은 ΔABC 에서 \overline{AD} 는 $\angle A$ 의 8. 이등분선이고 $\angle B = \angle C = 55^{\circ}$ 일 때, $\angle x$ 의 크기는? ③ 80°
 - ② 75° ① 70° ⑤90°
- B<u>\(\frac{55^{\circ}}{}\)</u>

4 85°

해설 ΔABC 는 두 내각의 크기가 같으므로 이등변삼각형

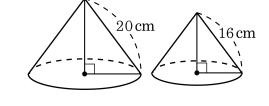
이등변삼각형의 성질 중 꼭지각의 이등분선은 밑변을 수직이등 분하므로 $\angle x = 90$ ° 이다.

9. 다음 평행사변형 ABCD 에서 \angle ABD = 41°, \angle ACD = 68° 일 때, $\angle a + \angle b$ 의 값은? (단, \angle DAC = $\angle a$, \angle DBC = $\angle b$)

① 60° ②71° ③ 80°

해설

∠BAC = ∠ACD = 68° (엇각) ∠ACB = ∠DAC = ∠a(엇각) ∠ADB = ∠DBC = ∠b(엇각) 따라서 △ABD 의 세 내각의 합은 180° 이므로 ∠a + 68° + 41° + ∠b = 180° ∴ ∠a + ∠b = 180° - 109° = 71° 10. 다음 그림에서 두 원뿔이 서로 닮은 도형일 때, 두 원뿔의 밑면의 지름의 길이의 비가 a:b 이다. 이때, a+b의 값을 구하여라. (단, a,b는 서로소)



 답:

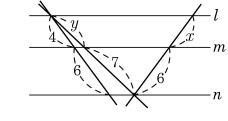
 ▷ 정답:
 9

해설

두 원뿔이 닮음이므로 모선의 길이의 비와 밑면의 지름의 길이의

비가 같으므로 20 : 16 = 5 : 4이다. 따라서 a+b=9이다.

11. 다음 그림에서 $l \parallel m \parallel n$ 일 때, x + 3y의 값은?



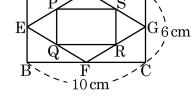
- ① 11
- ② 13
- ③ 14
- ④ 15
- **⑤**18

$$4:6=x:6$$
이므로 $x=4$,
 $4:6=y:7$ 이므로 $y=\frac{14}{3}$

$$4:6=y:70|\underline{\Box}\subseteq$$

$$\therefore x+3y=18$$

- 12. 다음 그림에서 □EFGH 는 직사각형 ABCD 의 각 변의 중점을 연결한 사각형이고, □PQRS는 □EFGH 의 각 변의 중점을 연결한 사각형이 다. $\Box PQRS$ 의 가로의 길이를 x, 세로의 길이를 y 라 할 때, x+y를 바르게 구한 것은?



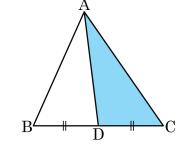
48 cm

⑤ 9 cm

 $\overline{PQ} = \overline{SR} = \frac{1}{2}\overline{HF} = 3 \text{ (cm)}$ $\overline{PS} = \overline{QR} = \frac{1}{2}\overline{EG} = 5 \text{ (cm)}$ 3 + 5 = 8

① $5\,\mathrm{cm}$ ② $6\,\mathrm{cm}$ ③ $7\,\mathrm{cm}$

13. 다음 그림에서 $\overline{\rm AD}$ 는 $\Delta {\rm ABC}$ 의 중선이다. $\Delta {\rm ACD}$ 의 넓이가 $7{\rm cm}^2$ 일 때, $\Delta {\rm ABC}$ 의 넓이는?



- ① 12cm² ④ 15cm²
- ② 13cm^2 ③ 16cm^2
- 314cm^2

해설

_

 $\overline{\mathrm{AD}}$ 는 $\Delta \mathrm{ABC}$ 의 중선이므로 $\overline{\mathrm{BC}}$ 를 이등분한다.

따라서 $\triangle ABC = 2\triangle ACD = 2 \times 7 = 14 \text{ (cm}^2)$ 이다.

- 14. 터널의 길이가 2 km 이다. 이 터널의 길이를 어떤 지도에서 40 cm 로 나타날 때, 같은 지도 상에서 24 cm 로 나타나는 터널의 실제 길이는?
 - ① 1km
- ② 1.1km
- ③1.2km
- ④ 1.3km

해설

⑤ 1.4km

축척을 구하면 40cm : 200000cm = 1 : 5000 이므로 24 cm 의

실제 거리는 $24 \,\mathrm{cm} \times 5000 = 120000 \,\mathrm{cm} = 1200 \,\mathrm{m} = 1.2 \,\mathrm{km}$ 이다.

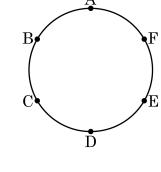
15. 집에서 학교로 가는 버스 노선이 3가지, 지하철 노선이 2가지가 있다. 버스나 지하철을 이용하여 집에서 학교까지 가는 방법은 모두 몇 가 지인가?

③ 4가지

① 2가지 ② 3가지 ④5가지 ⑤ 6가지

버스를 타고 가는 방법과 지하철을 타고 가는 방법은 동시에 일어나는 사건이 아니므로 경우의 수는 3+2=5(가지)이다.

16. 다음 그림과 같이 원 위에 서로 다른 6개의 점이 있다. 이 중에서 3 개의 점을 이어 삼각형을 만들 때, 만들 수 있는 삼각형의 개수는?



④20개

⑤ 30개

① 10개 ② 15개 ③ 18개

6개의 점 중에서 3개의 점을 차례로 뽑는 경우의 수는 6×5×4(가

지) 이다. 삼각형의 세 점의 순서가 바뀌어도 같은 삼각형이므로 구하는 삼각형의 개수는 $\frac{6\times5\times4}{3\times2\times1}=20(7)$ 이다.

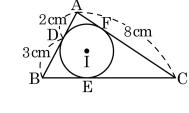
17. 15 발을 쏘아서 5 발을 명중시키는 포수가 있다. 포수가 2 발을 쏘아서 적어도 한 발은 명중시킬 확률은?

① $\frac{1}{5}$ ② $\frac{3}{5}$ ③ $\frac{1}{9}$ ④ $\frac{5}{9}$ ⑤ $\frac{7}{9}$

15발 중에서 5발을 명중시키므로 명중시킬 확률은 $\frac{1}{3}$ (적어도 한 발은 명중시킬 확률) = 1 -(모두 명중시키지 못할 확률)

 $\therefore 1 - \frac{2}{3} \times \frac{2}{3} = \frac{5}{9}$

18. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이고, 세 점 D, E, F 는 각각 내접 원과 세 변 AB, BC, CA 의 점점이다. $\overline{AD}=2cm, \overline{BD}=3cm, \overline{AC}=8cm$ 일 때, \overline{BC} 의 길이는?



① 6cm

② 7cm

③ 8cm

49cm

⑤ 10cm

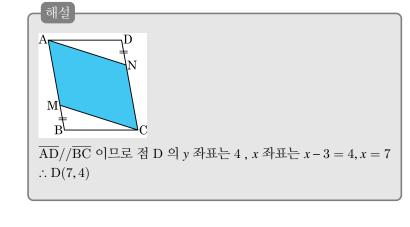
점 I 가 삼각형의 내심이므로 $\overline{\mathrm{AD}}=\overline{\mathrm{AF}},\overline{\mathrm{BE}}=\overline{\mathrm{BD}},\overline{\mathrm{CE}}=\overline{\mathrm{CF}}$

지D = \overline{AF} = 2cm, \overline{BE} = \overline{BD} = 3cm, \overline{CE} = \overline{CF} 이므로 \overline{CF} = 6cm = \overline{CE} 이다.

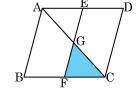
6cm = CE 이다. 따라서 $\overline{BC} = \overline{BE} + \overline{EC} = 3 + 6 = 9(cm)$ 이다.

19. 좌표평면 위에 세 점 A(3,4), B(2,-2), C(6,-2) 가 있다. □ABCD 가 평행사변형이 되기 위한 점 D 의 좌표는?
 (단, 점 D 는 제 1사분면에 있다.)

① (5,3) ② (6,3) ③ (7,4) ④ (5,4) ⑤ (7,5)

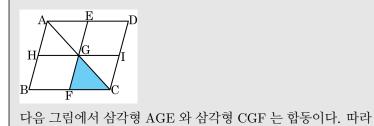


- ${f 20}$. 다음 그림의 평행사변형 ABCD 에서 점 ${f E},\,{f F}$ 는 각각 변 AD, BC 의 중점이고, 빗금 친 삼 각형의 넓이는 15 cm²일 때, 평행사변형 ABCD 의 넓이는?



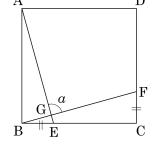
① 90 cm^2 ② 100 cm^2 ③ 110 cm^2

4 120 cm² 3 130 cm²



서 점 G 는 변 EF 의 중점이다. 점 G 를 지나고 AD 에 평행한 선분 HI 를 그으면 변 EF 와 HI 에 의해 평행사변형은 합동인 네 개의 평행사변형으로 나누어진다. 평행사변형의 대각선은 평행사변형의 넓이를 이등분하므로 색칠한 삼각형의 넓이는 전체 평행사변형 넓이의 $\frac{1}{8}$ 이다. 따라서 평행사변형의 넓이는 8×15 = 120 (cm²) 이다.

 ${f 21}$. 다음과 같은 정사각형 ${
m ABCD}$ 에서 ${
m \overline{BE}}$ = $\overline{\mathrm{CF}}$ 이고, $\overline{\mathrm{AE}}$ 와 $\overline{\mathrm{BF}}$ 의 교점을 G라 할 때, ∠a의 크기를 구하여라.



▶ 답: ▷ 정답: 90°

$\triangle ABE$ 와 $\triangle BCF$ 에서 $\overline{AB} = \overline{BC}$

해설

 $\angle ABE = \angle BCF = 90^{\circ}$ $\overline{\mathrm{BE}} = \overline{\mathrm{CF}}$

∠CBF + ∠BFC = 90°이므로

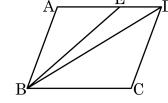
∴ △ABE ≡ △BCF (SAS 합동)

 $\angle \text{CBF} + \angle \text{AEB} = 90^{\circ}$ $(\because \ \angle BFC = \angle AEB)$

 ΔGBE 에서

 $\angle \mathrm{BGE} = 90\,^{\circ}$ 이므로 맞꼭지각으로 $\angle a = 90\,^{\circ}$

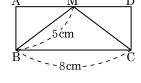
- 22. 다음 그림과 같은 평행사변형 ABCD의 넓이가 $50 \mathrm{cm}^2$ 이고, $\overline{\mathrm{AE}}:\overline{\mathrm{ED}}=3:2$ 일 때, $\Delta\mathrm{ABE}$ 의 넓이는?



- 4 20cm^2
- $2 12 \text{cm}^2$ \bigcirc 25cm²
- 315cm^2

 $\triangle ABE + \triangle EBD = \frac{1}{2} \square ABCD$ $\therefore \triangle ABE = \frac{1}{2} \square ABCD \times \frac{3}{3+2} = 15 (cm^2)$

23. 다음 그림과 같은 직사각형 ABCD 에서 점 M 은 선분 AD 의 중점이고, $\overline{\mathrm{BM}}$ = 5cm, $\overline{BC}=8$ cm 일 때, □ABCD 의 넓이 를 구하여라.



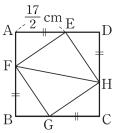
▷ 정답: 24<u>cm²</u>

▶ 답:

 $\overline{AM}=4(cm)$, $\triangle ABM$ 에서 $5^2=4^2+\overline{AB}^2$ 이므로 $\overline{AB}=3(cm)$ \therefore $\Box ABCD=8\times 3=24(cm^2)$

 $\underline{\mathrm{cm}^2}$

오른쪽 그림과 같은 넓이가 $A = 144 \text{ cm}^2$ 인 정사각형 ABCD에서 $A = \overline{AE} = \overline{BF} = \overline{CG} = \overline{DH} = \frac{17}{2} \text{ cm}$ 일 때, \overline{FH} 의 길이를 구하시오.



▷ 정답: 13cm

▶ 답:

 \square ABCD = \overline{AD}^2 = 144이므로 \overline{AD} = 12 (cm)

 $\therefore \overline{DE} = 12 - \frac{17}{2} = \frac{7}{2} \text{ (cm)}$

이때 $\triangle AFE \equiv \triangle BGF \equiv \triangle CHG \equiv \triangle DEH$ 이므로

EF=FG=GH=HE 즉, □EFGH는 정사각형이다.

 \triangle AFE에서 $\overline{\mathrm{EF}}^2 = \left(\frac{7}{2}\right)^2 + \left(\frac{17}{2}\right)^2 = \frac{169}{2}$

등변삼각형이므로 $\overline{\mathrm{FH}}^2 = 2 \times \overline{\mathrm{EF}}^2 = 2 \times \frac{169}{2} = 169$

이때 △EFH는 $\overline{\mathrm{EF}} = \overline{\mathrm{HE}}$, ∠FEH=90°인 직각이

∴ FH=13 (cm)

25. 다음 그림과 같이 $\angle A = 90^\circ$ 인 직각삼각형 ABC의 세 변을 각각 한 변으로 하는 정사각 형을 만들었다. $\overline{AB} = 3\,\mathrm{cm}, \,\overline{BC} = 5\,\mathrm{cm}$ 일 때, 색칠되어 있는 부분의 넓이를 구하여라.



ightharpoonup 정답: $\frac{96}{25}$ cm^2

 $\underline{\rm cm^2}$

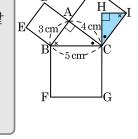
25

답:

점 I에서 \overline{CG} 의 연장선에 내린 수선의 발을 H라 하면

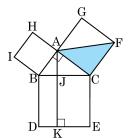
 $\triangle ABC$ 와 $\triangle CIH$ 는 각의 크기가 모두 같으므로 닮음이다. 따라서 $\overline{HI} = 3 \times \frac{4}{5}$, $\overline{HC} = 4 \times \frac{4}{5}$ $\triangle CIH$ 의 넓이는 $\frac{1}{2} \times \frac{16}{5} \times \frac{12}{5} = \frac{96}{25}$ (cm²)

 Δ CIH의 넓이는 $\frac{1}{2} \times \frac{1}{5} \times \frac{1}{5} = \frac{1}{25} \text{(cm}^2)$



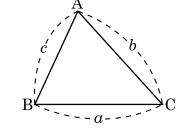
26. 다음 그림과 같이 $\angle A = 90$ ° 인 직각삼각형 ABC 에서 세 변 \overline{AB} , \overline{BC} , \overline{CA} 를 각각 한 변으로 하는 정사각형을 그렸다. 다음 중 $\triangle ACF$ 와 넓이가 같은 것은 모두 몇 개인가?

해설



 $\triangle ACF = \triangle BCF = \frac{1}{2}\Box CEKJ = \triangle ACE$

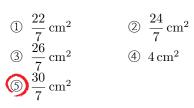
27. 다음 그림과 같이 $\triangle ABC$ 의 세 변을 a,b,c 라 할 때, 다음 중 옳지 <u>않은</u> 것은?

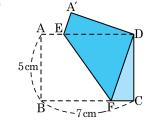


- ① $a^2 = b^2 + c^2$ 이면 $\triangle ABC$ 는 직각삼각형이다. ② $a^2 > b^2 + c^2$ 이면 $\triangle ABC$ 는 둔각삼각형이다.
- $3a^2 < b^2 + c^2$ 이면 $\triangle ABC$ 는 예각삼각형이다.
- ④ ∠B > 90° 이면 $b^2 > a^2 + c^2$ 이다.
- ⑤ ∠C < 90° 이면 $c^2 < a^2 + b^2$ 이다.

$a^2 < b^2 + c^2$ 이면 $\angle A < 90$ °이지만 $\angle C$ 또는 $\angle B$ 가 둔각일 수도

있다. ______ 28. 다음 그림과 같이 직사각형 ABCD 의 점 B 가 점 D 에 오도록 접었다. $\overline{AB}=5\,\mathrm{cm},\ \overline{BC}=7\,\mathrm{cm}$ 일 때, $\triangle A'ED$ 의 넓이는?





해설

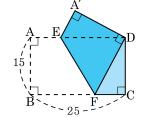
 $\overline{\mathrm{A'E}}$ 를 $x\,\mathrm{cm}$ 라고 하면,

△A′ED 에서

 $5^{2} + x^{2} = (7 - x)^{2}$ 14x = 49 - 25 $x = \frac{12}{7} \text{ (cm)}$

따라서 Δ A'ED 의 넓이는 $\frac{1}{2} \times 5 \times \frac{12}{7} = \frac{30}{7} (\text{cm}^2)$ 이다.

29. 다음 그림과 같이 직사각형 ABCD 의 꼭짓점 B 가 점 D 에 오도록 접었다. $\overline{\mathrm{AB}}~=~15,~\overline{\mathrm{BC}}~=~25$ 일 때, 사다리꼴 A'DFE 의 넓이는?



4 187.5

① 150

② 163.5 ③ 175 ⑤ 194.5

$\overline{\mathbf{A}'\mathbf{E}}$ 를 x 라고 하면,

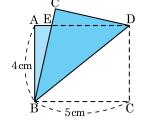
해설

△A′ED 에서 $x^2 + 15^2 = (25 - x)^2$

 $50x = 625 - 225, \, x = 8$

따라서 사다리꼴 A'DFE 의 넓이는 $\frac{1}{2}$ × (8+17) × $15=\frac{375}{2}=$ 187.5 이다.

30. 다음 그림과 같이 직사각형 ABCD 에서 대 각선 BD 를 접는 선으로 하여 접어서 점 C 가 옮겨진 점을 C', 변 BC'와 변 AD 의 교점을 E 라고 할 때, 옳은 것은 ?



③ △BDE 는 정삼각형

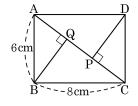
① $\angle ABE + \angle EBD = \angle CBD$

- ② $\overline{AB} + \overline{AE} = \overline{DE}$ \bigcirc $\triangle ABE + \angle DEC' = 90^{\circ}$

△ABE ≡ △C'DE 이므로 ∠ABE = ∠C'DE 가 성립한다. 따라서

 $\angle ABE + \angle DEC' = 90^{\circ}$

 ${f 31.}$ 다음 직사각형의 두 꼭짓점 ${f B},\,{f D}$ 에서 대각 선 AC 에 내린 수선의 발을 각각 $Q,\ P$ 라 할 때, \overline{PQ} 의 길이를 구하여라.



▶ 답: ▷ 정답: 2.8 cm

ΔABC 는 직각삼각형이므로

 $\overline{AC} = 10(cm)$ 이다.

 $\overline{AQ} = \overline{PC}$ 이고 $\triangle ABQ$ 와 $\triangle ABC$ 는 닮음이므로 $\overline{AB} : \overline{AC} = \overline{AQ} : \overline{AB}$ 에서 $\overline{AB}^2 = \overline{AQ} \times \overline{AC}$ 이므로

 $\underline{\mathrm{cm}}$

 $\overline{\mathrm{AQ}} = \frac{36}{10} = 3.6 \mathrm{(\,cm)}$ 이다.

따라서 $\overline{PQ} = 10 - 3.6 - 3.6 = 2.8 (cm)$ 이다.

32. 위인전, 수학책, 잡지책, 영어사전, 과학책의 5 가지 책을 일렬로 책 꽂이에 꽂을 때, 위인전과 영어사전을 이웃하여 꽂는 방법의 수를 구하여라.

답: <u>가지</u>

 ▶ 정답: 48

위인전과 영어사전을 고정시켜 한 묶음으로 생각한 후 일렬로

해설

세우는 방법의 수는 $4 \times 3 \times 2 \times 1 = 24$ (가지)이고, 위인전과 영어사전이 자리를 바꾸면 $24 \times 2 = 48$ (가지)이다.

33. 네 개의 동전을 동시에 던질 때, 앞면이 3 개 또는 4 개 나올 확률은?

① $\frac{5}{16}$ ② $\frac{3}{16}$ ③ $\frac{1}{16}$ ④ $\frac{3}{8}$ ⑤ $\frac{1}{8}$

모든 경우의 수는 $2 \times 2 \times 2 \times 2 = 16$ (가지) 앞면이 3 개 나오는 경우는 (앞, 앞, 앞, 뒤), (앞, 앞, 뒤, 앞), (앞, 뒤,

앞, 앞), (뒤, 앞, 앞, 앞) 의 4 가지이므로 확률은 $\frac{4}{16}$ 이고, 앞면이 4 개 나오는 경우는 (앞, 앞, 앞, 앞) 의 1 가지이므로 확률은 $\frac{1}{16}$

이다. 따라서 구하는 확률은 $\frac{4}{16} + \frac{1}{16} = \frac{5}{16}$ 이다.

- ${f 34.}$ 각 면에 $-1,\,0,\,1,\,2$ 가 적혀 있는 정사면체를 두 번 던졌을 때, 바닥에 닿은 면에 적혀 있는 숫자의 합이 2가 될 확률을 구하여라.
 - ▶ 답:

ightharpoonup 정답: $rac{3}{16}$

0, 2가 나올 확률은 $\frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$ 2, 0이 나올 확률은 $\frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$ 1, 1이 나올 확률은 $\frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$ 따라서 구하는 확률은 $\frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{3}{16}$

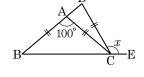
 ${f 35.}$ O,R,A,N,G,E의 문자가 각각 적힌 6장의 카드 중에서 한 장을 뽑 아서 읽고, 다시 넣어 또 한 장을 뽑았을 때, 두 번 모두 같은 문자가 적힌 카드를 뽑을 확률을 구하여라.

ightharpoonup 정답: $rac{1}{6}$

▶ 답:

처음과 두 번째에 같은 카드가 나올 확률은 $\frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$ 이고, 카드는 O,R,A,N,G,E의 6가지가 있으므로 확률은 $\frac{1}{36} \times 6 = \frac{1}{6}$

36. 다음 그림에서 $\overline{AB}=\overline{AC}=\overline{CD}$ 이고 $\angle BAC=100$ °일 때, $\angle DCE$ 의 크기를 구하여라.



➢ 정답: 120_°

_

▶ 답:

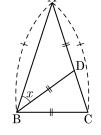
$\overline{AB} = \overline{AC}$ 이므로

 $\angle B = \angle ACB = \frac{1}{2}(180\degree - 100\degree) = 40\degree$ 이다.

 $\overline{AC} = \overline{DC}$ 이므로 $\angle CAD = 180^{\circ} - 100^{\circ} = 80^{\circ}$ 이다.

ZD = ZCAD = 180° - 100° = 80°이다. 따라서 ZDCE = ZB + ZD = 40° + 80° = 120°

 ${f 37.}$ 다음 그림과 같이 ΔABC 에서 $\overline{AB}=\overline{AC}$, $\overline{BC}=$ $\overline{\mathrm{BD}} = \overline{\mathrm{AD}}$ 일 때, $\angle x$ 의 크기를 구하여라.



▷ 정답: 36_°

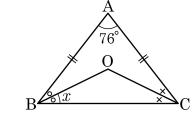
▶ 답:

 $\overline{\mathrm{AD}} = \overline{\mathrm{BD}}$ 이므로 $\angle \mathrm{A} = \angle \mathrm{ABD} = \angle x$

 $\overline{\mathrm{BD}} = \overline{\mathrm{BC}}$ 이므로 $\angle \mathrm{BDC} = \angle \mathrm{C} = 2 \angle x$ $\overline{AB} = \overline{AC}$ 이므로 $\angle ABC = \angle C = 2\angle x$ $\angle A + \angle ABC + \angle C = 180$ °이므로 $\angle x + 2\angle x + 2\angle x = 180^{\circ}$

따라서 $5 \angle x = 180$ °, $\angle x = 36$ °이다.

 ${f 38.}$ ${f \overline{AB}}={f \overline{AC}}$ 인 이등변삼각형 ${f ABC}$ 에서 ${\it \angle BAC}=76^\circ$ 일 때, ${\it \angle x}$ 의 크기는?



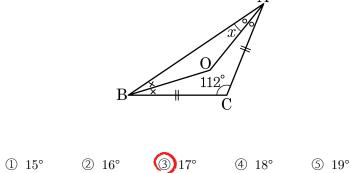
① 20° ② 22° ③ 24°

⑤ 28°

해설 $\triangle ABC$ 가 이등변삼각형이므로 $\angle ABC = \angle ACB$

그런데 $\angle ABC$ 와 $\angle ACB$ 를 이등분한 선이 만나는 점이 O 이므로 $\angle ABO = \angle OBC = \angle OCB = \angle ACO$ 따라서 $4 \times \angle x = 180^{\circ} - 76^{\circ} = 104^{\circ}$ $\therefore \angle x = 26^{\circ}$

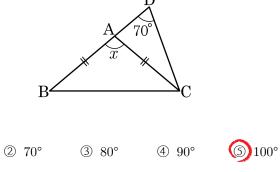
 ${f 39.}$ $\overline{
m AC}=\overline{
m BC}$ 인 이등변삼각형 m ABC 에서 $m \angle ACB=112^{\circ}$ 일 때, $m \angle \it x$ 의 크기는?



 $\triangle ABC$ 가 이등변삼각형이므로 $\angle CAB = \angle CBA$

그런데 $\angle CAB$ 와 $\angle CBA$ 를 이등분한 선이 만나는 점이 O 이므로 $\angle CAO = \angle OAB = \angle OBA = \angle CBO$ 따라서 $4 \times \angle x = 180^{\circ} - 112^{\circ} = 68^{\circ}$ $\therefore \angle x = 17^{\circ}$

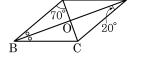
40. 그림에서 $\overline{AB}=\overline{AC},\overline{BD}=\overline{BC}$ 이고 $\angle D=70^\circ$ 일 때, $\angle x$ 의 크기를 구하여라.



 $\angle DCB = 70^{\circ}, \angle B = 40^{\circ}, \angle x = 100^{\circ}$

① 60°

41. 다음 그림과 같은 평행사변형 ABCD 에서 ∠ABO = ∠CBO, ∠OAB = 70°, ∠ODC = 20° 일 때, ∠OCB 의 크기를 구하여라.



➢ 정답: 70_°

_

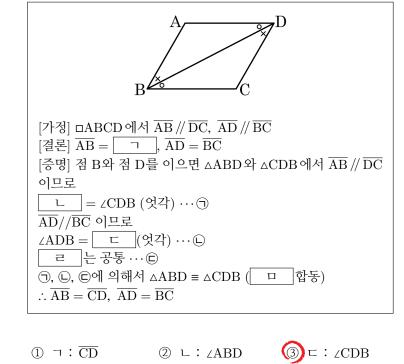
▶ 답:

 $\overline{\rm AB}\,/\!/\,\overline{\rm CD}$ 이므로 $\angle {\rm CDB} = \angle {\rm ABD} = 20^\circ$ 이고, $\triangle {\rm ABC}$ 에서

해설

∠OCB = 180° - (70° + 40°) = 70° 이다.

42. 다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. ¬ ~ □에 들어갈 것으로 옳지 <u>않은</u> 것은?



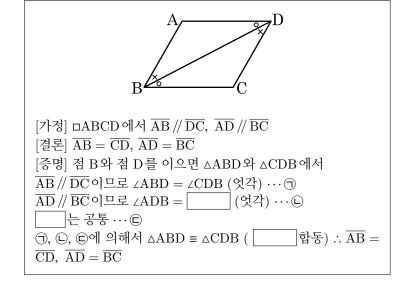
 $\textcircled{4} = : \overline{BD}$

① ¬: \overline{CD} ② L: \(\alpha \) ABD ⑤ □: ASA

해설

③ $\overline{\mathrm{AD}} /\!/ \overline{\mathrm{BC}}$ 이므로 $\angle \mathrm{ADB} = \angle \mathrm{CBD}$ 이다.

43. 다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 것을 차례대로 나열하면?



3 $\angle BCD$, \overline{BC} , ASA 4 $\angle CDB$, \overline{BD} , ASA

① \angle CDB, \overline{BC} , SSS

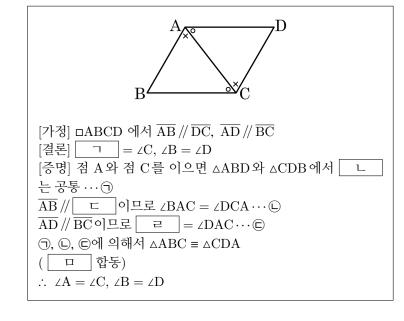
 \bigcirc \angle CDB, \overline{BD} , SSS

⑤∠DBC, DB, ASA

 \triangle ABD와 \triangle CDB에서 $\overline{AB} /\!/ \overline{DC}$ 이므로 $\angle ABD = \angle CDB$ (엇각),

해설

 $\overline{\mathrm{AD}} /\!/ \overline{\mathrm{BC}}$ 이므로 $\angle \mathrm{ADB} = \angle \mathrm{DBC}$ (엇각), $\overline{\mathrm{DB}}$ 는 공통 이므로 $\triangle\mathrm{ABD} = \triangle\mathrm{CDB} \ (\mathrm{ASA} \ \mathrm{\ddot{o}} \ \mathrm{S})$ 이다. 44. 다음은 '평행사변형에서 두 쌍의 대각의 크기가 각각 같다.' 를 증명한 것이다. $\neg \sim \square$ 에 들어갈 것으로 옳지 않은 것은?



④ = : ∠BCA ⑤□: SAS

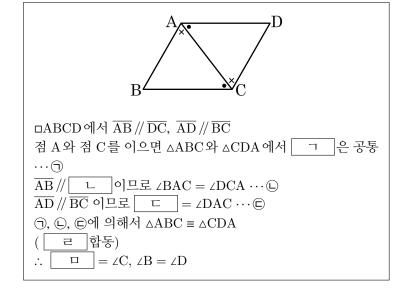
① $\neg: \angle A$ ② $\iota: \overline{AC}$ ③ $\iota: \overline{DC}$

해설 ΔABC와 ΔCDA 에서 AC는 공통

 $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$ 이므로 $\angle \mathrm{BAC} = \angle \mathrm{DCA}$, $\overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$ 이므로

∠ACB = ∠DAC이므로 △ABC ≡ △CDA (ASA 합동)이다.

45. 다음은 '평행사변형에서 두 쌍의 대각의 크기가 각각 같다.' 를 나타 내는 과정이다. ㄱ~ㅁ에 들어갈 것으로 옳은 것은?



④ =:SSS

① $\neg : \overline{\text{CD}}$ ② $\vdash : \overline{\text{BC}}$ ③ $\vdash : \angle \text{BAC}$ ⑤ □ : ∠A

해설

 $\angle A=\angle C,\ \angle B=\angle D$ 이기 위해서 점 A와 점 C를 이으면 $\triangle ABC$

와 △CDA 에서 AC 는 공통이고, $\overline{AB} /\!/ \overline{CD}$ 이므로 $\angle BAC = \angle DCA$ $\overline{\mathrm{AD}} /\!/ \overline{\mathrm{BC}}$ 이므로 $\angle \mathrm{ACB} = \angle \mathrm{DAC}$ 이므로

 \triangle ABC \equiv \triangle CDA (ASA 합동)이다.

- **46.** 다음 중 항상 닮음 도형인 것을 모두 고르면?(정답 2개)
 - ① 한 대응하는 각의 크기가 같은 두 평행사변형 ② 반지름의 길이가 다른 두 원

 - ③ 밑변의 길이가 다른 두 정삼각형 ④ 반지름의 길이가 같은 두 부채꼴
 - ⑤ 아랫변의 양 끝각의 크기가 서로 같은 두 등변사다리꼴

해설

원은 확대, 축소하면 반지름과 원의 둘레의 길이가 일정한 비율로 정삼각형은 세 변의 길이가 일정한 비율로 변하므로 항상 닮음 도형이다.

47. 다음 중 옳지 <u>않은</u> 것은?

- ① 닮은 도형이란 서로 닮음인 관계에 있는 두 도형을 말한다.② 서로 닮은 두 평면도형에서 대응하는 변의 길이의 비는
- 일정하다. ③ △ABC와 △DEF가 닮음일 때, △ABC∽△DEF 와 같이
- 나타낸다.
 ④ 두 닮은 평면도형에서 대응하는 각의 크기는 다를 수도 있다.
- ⑤ 두 닮은 입체도형에서 대응하는 선분의 길이의 비는 일정하다.

두 닮은 평면도형에서 대응하는 각의 크기는 항상 같다.

해설

48. 다음 중 항상 닮은 도형이라고 할 수 $\underline{\text{없는}}$ 것을 보기에서 모두 골라라.

□ 두 사각뿔
 □ 두 정육면체
 □ 두 삼각기둥
 □ 두 장사면체

▶ 답: ▷ 저다:

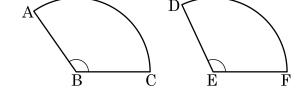
▶ 답:

 ▷ 정답: ①

 ▷ 정답: ②

확대, 축소했을 때 사각뿔과 삼각기둥은 밑면, 옆면의 모양이 일정한 비율로 변하지 않으므로 항상 닮은 도형이 아니다.

49. 다음 두 부채꼴에서 하나의 조건을 더 만족하면 두 부채꼴은 항상 닮음이 된다. 그 조건을 보기에서 골라라.



 $\bigcirc 5.0 pt \widehat{AC} = 5.0 pt \widehat{DF}$

▷ 정답: ⑤

답:

해설

답이다.

두 부채꼴이 중심각의 크기가 같으면 확대, 축소했을 때 반지름의 길이와 호의 길이가 일정한 비율로 변하므로 $\angle ABC = \angle DEF$ 가

- 50. 다음 중 항상 닮음 도형인 것을 골라라.
 - 및 밑변의 길이가 같은 두 직각삼각형⑤ 중심각의 크기가 같은 두 부채꼴
 - © 한 대응하는 변의 길이가 같은 두 직사각형
 - © E NOTE EN EL PRET
 - ② 한 대응하는 각의 크기가 같은 두 사다리꼴

▷ 정답: □

해설

▶ 답:

두 부채꼴이 중심각의 크기가 같으면 확대, 축소했을 때 반지름의 길이와 호의 길이가 일정한 비율로 변하므로 항상 닮음이다.