1. 한 근이 1-i 인 이차방정식이 $x^2 + ax + b = 0$ 일 때, 실수 a + b 의 값을 구하시오.

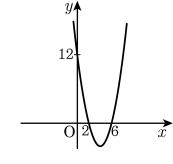
■ 답:

▷ 정답: 0

한 근이 1-i 이면 다른 한 근은 1+i 이다. 두 근의 합 : 2,

두 근의 곱: 2 ∴ a = -2, b = 2

2. 다음은 이차함수 y = (x-2)(x-6)의 그래프이다.



이 이차함수가 *x*축과 만나는 두 점을 각각 A, B라 할 때, ĀB의 길이를 구하여라. 답:

▷ 정답: 4

이차방정식 (x-2)(x-6)=0 에서 x=2 또는 x=6 따라서 A $(2,\ 0)$, B $(6,\ 0)$ 이므로 $\overline{\rm AB}=4$

- **3.** 포물선 $y = -x^2 + kx$ 와 직선 y = x + 1 이 서로 다른 두 점에서 만나기 위한 k 의 범위는?
 - ① k > 2, k < -1 ② k > 3, k < -1 ③ k > 1, k < -1 ④ k > 3, k < -2 ⑤ k > 3, k < -3

 $-x^{2} + kx = x + 1, x^{2} + (1 - k)x + 1 = 0$ ▷ $D = (1 - k)^{2} - 4 > 0$ $k^{2} - 2k - 3 = (k - 3)(k + 1) > 0$ $\therefore k > 3$ 또는 k < -1

포물선과 직선이 다른 두 점에서 만나므로

4. 계수가 유리수인 이차방정식 $x^2 - ax + b = 0$ 의 한 근이 $2 + \sqrt{3}$ 일 때, ab 의 값은?

① -3 ② 0 ③ 2

3 4 5 2 + 2 $\sqrt{3}$

유리계수이므로 다른 한 근은 $2-\sqrt{3}$ 근과 계수와의 관계에 의해 a = 4, b = 1

 $\therefore ab = 4$

해설

 $x^2 + ax + b = 0$ 에 $x = 2 + \sqrt{3}$ 대입 $(2 + \sqrt{3})^2 - a \cdot (2 + \sqrt{3}) + b = 0$ 계수가 유리수이므로

 $\sqrt{3} \cdot (4 - a) + (b - 2a + 7) = 0$

a = 4, b = 1 $\therefore ab = 4$

- **5.** 이차방정식 $x^2 + ax + b = 0$ 의 한 근이 1 i 일 때, a + b 의 값을 구하면? (단, a,b 는 실수)

다른 한 근은 복소수의 켤레근인 1+i 이므로

해설

두 근의 합: (1+i)+(1-i)=-a $\therefore a=-2$ 두 근의 곱: (1+i)(1-i) = b $\therefore b=2$ $\therefore a+b=-2+2=0$

- 이차함수 $y = x^2 8x + a$ 의 그래프와 x축과의 교점의 x좌표가 6, b**6.** 일 때, a+b의 값은?

- ① 11 ② 12 ③ 13 ④ 14
- ⑤ 15

이차함수 $y = x^2 - 8x + a$ 의 그래프와

x축과의 교점의 x좌표는

이차방정식 $x^2 - 8x + a = 0$ 의 실근이다.

 $x^2 - 8x + a = 0$ 에 x = 6을 대입하면

36 - 48 + a = 0에서 a = 12따라서 $x^2 - 8x + 12 = 0$ 에서 (x-2)(x-6) = 0

 $x = 2 \stackrel{\rightharpoonup}{\to} x = 6$

 $\therefore b = 2 \therefore a + b = 14$

- 7. 이차함수 $y = x^2 + (k-3)x + k$ 의 그래프가 x 축과 만나지 않을 때, 실수 k 의 값의 범위는?
 - ① -1 < k < 7 ② -1 < k < 8 ③ 0 < k < 9 $\textcircled{4} 1 < k < 9 \qquad \qquad \textcircled{5} \ \ 1 < k < 10$

주어진 이차함수의 그래프가

x 축과 만나지 않으려면

- 이차방정식 $x^2 + (k-3)x + k = 0$ 이
- 실근을 갖지 않아야 하므로 $D = (k - 3)^2 - 4k < 0$
- $k^2 10k + 9 < 0, (k 1)(k 9) < 0$
- 1 < k < 9

- 8. 직선 y = 3x + 2 와 포물선 $y = x^2 + mx + 3$ 이 두 점에서 만나기 위한 실수 m 의 범위를 구하면?
 - ① m < -1, m > 3 ② m < 1, m > 5 ③ -1 < m < 3 ④ -1 < m < 5

 $y = 3x + 2, y = x^2 + mx + 3$ 에서 $y \equiv 소거하면$ $x^2 + (m-3)x + 1 = 0, D = (m-3)^2 - 4 > 0$ $m^2 - 6m + 5 > 0, (m-1)(m-5) > 0$ m < 1, m > 5

이차함수 $y = x^2 + ax + 2a$ 의 그래프는 x 축과 두 점 A, B 에서 만나고 9. $\overline{\mathrm{AB}}=2$ 일 때, 모든 실수 a의 값의 합을 구하여라.

▶ 답: ▷ 정답: 8

해설

 $A(\alpha, 0), B(\beta, 0)(\alpha < \beta)$ 이라 하면 lpha, eta 는 이차방정식 $x^2 + ax + 2a = 0$ 의 두 근이므로 근과 계수의 관계에 의하여 $\alpha + \beta = -a, \ \alpha\beta = 2a \quad \cdots \bigcirc$ 이 때, $\overline{AB} = 2$ 이므로 eta – lpha = 2 양변을 제곱하면 $(\beta - \alpha)^2 = 4$ $(\alpha + \beta)^2 - 4\alpha\beta = 4 \quad \cdots \bigcirc$ ①을 \bigcirc 에 대입하여 정리하면 $a^2 - 8a - 4 = 0$ 따라서 모든 실수 a 의 값의 합은 8 이다

10. 이차함수 $y = x^2 - ax + 3$ 의 그래프가 직선 y = 0과 두 점에서 만나기 위한 자연수 a의 최솟값을 구하여라.

▶ 답: ▷ 정답: 4

이차함수 $y=x^2-ax+3$ 의 그래프가 x축 (y=0)과 서로 다른

두 점에서 만나야 한다. 즉 이차방정식 $x^2 - ax + 3 = 0$ 이 서로 다른 두 실근을 가져야 하므로 판별식을 D라 하면 $D = a^2 - 12 > 0$ 에서

 $a < -2\sqrt{3}$ 또는 $a > 2\sqrt{3}$ 따라서 자연수 a의 최솟값은 4이다.

11. 이차함수 y = f(x) 의 그래프가 다음 그림과 같을 때, 이차함수 f(x+a) = 0 의 두 실근의 합이 5 가 되도록 하는 상수 a 의 값은?

<u>1</u> –3 **4** 0

② -2 ③ -1 ⑤ 1

y=f(x)

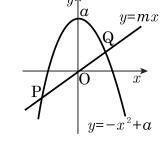
해설

y=f(x+a) 의 그래프는 y=f(x) 의 그래프를 x 축의 방향으로 -a 만큼 평행이동한 것이다. y = f(x) 이 그래프가

x 축과 만나는 점의 좌표가 -2,1 이므로

- y = f(x + a) 의 그래프가 x 축과 만나는 점의 좌표는 -2 - a, 1 - a
- 따라서, 방정식 f(x+a) = 0 의 두 실근이
- -2-a, 1-a이고 그 합이 5 이므로 -2-a+1-a=5
- $\therefore a = -3$

12. 다음 그림과 같이 이차함수 $y = -x^2 + a$ 의 그래프와 직선 y = mx가 서로 다른 두 점 P, Q에서 만난다. 점 Q의 x좌표가 $\sqrt{5}-1$ 일 때, a+m의 값을 구하여라. (단, a, m은 유리수)



▷ 정답: 6

▶ 답:

 $y = -x^2 + a$ 와 y = mx 가 만나는 두 점 P, Q 의 x 좌표는 방정식이 $-x^2 + a = mx$ 의 근이다. 점 Q의 x 좌표가 $\sqrt{5} - 1$ 이므로 방정식 $x^2 + mx - a = 0$ 의 한 근이 $\sqrt{5} - 1$ 이다. 그런데 a 와 m 이 유리수이므로 다른 한 근은 $-\sqrt{5}-1$ 이다. 따라서, 이차방정식의 근과 계수의 관계에 의하여 $-m = (\sqrt{5} - 1) + (-\sqrt{5} - 1) = -2$ $-a = (\sqrt{5} - 1)(-\sqrt{5} - 1) = -4$ $\therefore a = 4, \ m = 2 \qquad \therefore a + m = 6$

- 13. 이차함수 $y = x^2 + 3x + 1$ 의 그래프와 직선 y = -x + 3 의 두 교점의 좌표를 (x_1, y_1) , (x_2, y_2) 라 할 때, y_1y_2 의 값은?

- ① 11 ② 13 ③ 15 ④ 17

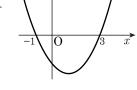
두 교점의 x 좌표 x_1, x_2 는 방정식 $x^2 + 3x + 1 = -x + 3$ 의 실근이다. $x^2 + 4x - 2 = 0$ 에서 근과 계수의 관계에 의하여

 $x_1 + x_2 = -4$, $x_1 x_2 = -2$

 $\therefore y_1 y_2 = (-x_1 + 3)(-x_2 + 3)$

 $= x_1 x_2 - 3(x_1 + x_2) + 9$ = -2 + 12 + 9 = 19

14. 이차함수 y = f(x)의 그래프가 다음 그림과 같을 때, 이차방정식 f(2x-1) = 0의 두 근의 합은?



4)2

① -1

해설

② 0 ③ 3

y = f(x)의 그래프와 x 축의 교점의 x 좌표가 -1, 3이므로 f(x) = a(x+1)(x-3)(a>0)으로 놓을 수 있다. 이때, f(2x-1) = a(2x-1+1)(2x-1-3) = 4ax(x-2)이 므로 f(2x-1) = 0에서 4ax(x-2) = 0 $\therefore x = 0$ 또는 x = 2 따라서 두 근의 합은 x = 2 마라서 두 근의 합은 x = 2

3 1

15. 이차함수 $y = x^2 - (a^2 - 4a + 3) x$ 의 그래프와 직선 $y = x + 12 - a^2$ 이 서로 다른 두 점에서 만나고, 두 교점이 원점에 대하여 대칭일 때, 상수 a 의 값을 구하여라.

답:

▷ 정답: 2

이차함수 $y=x^2-\left(a^2-4a+3\right)x$ 의 그래프와 직선 y=x+

 $12 - a^2$ 의 교점의 x좌표는 이차방정식 $x^2 - (a^2 - 4a + 3) x =$ $x + 12 - a^2$ 즉, $x^2 - (a^2 - 4a + 4)x + a^2 - 12 = 0$ 의 두 근이다.

그런데 두 교점이 원점에 대하여 대칭이므로 위의 이차방정식의 두 근의 합은 0이고, 두 근의 곱은 음이다.

따라서, 근과 계수의 관계에 의하여 $a^2 - 4a + 4 = 0 \text{ old } (a-2)^2 = 0$ $\therefore a = 2$

 $a^2 - 12 < 0$ 에서 $-2\sqrt{3} < a < 2\sqrt{3}$ $\therefore a = 2$