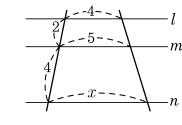
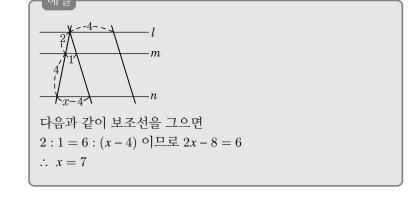
다음과 같은 $\triangle ABC$ 에서 \overline{PQ} // \overline{BC} 라 할 때, 1. $\overline{\mathrm{AQ}}$ 의 길이는?

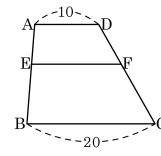
- ① 12 ② 11 **4** 9 ⑤ 8
- **3**10


 $\overline{\mathrm{AB}}:\overline{\mathrm{AP}}=\overline{\mathrm{AC}}:\overline{\mathrm{AQ}}$

해설


12:8=15:x

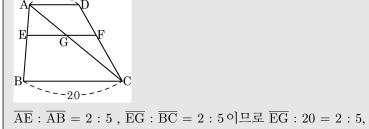
x = 10


2. 다음 그림에서 l//m//n 일 때, x 의 값은?

② 7.5 ③ 8 ④ 8.5 ⑤ 9

다음 그림의 사다리꼴에서 $\overline{
m AD}=10$, $\overline{
m BC}=20$ 이다. $\overline{
m AE}:\overline{
m EB}=$ 3. 2:3일 때, $\overline{\mathrm{EF}}$ 의 길이는?

① 13

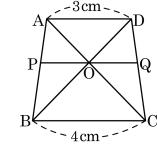

② 13.5

314

4 14.5

⑤ 15

점 A 에서 점 C로 선을 긋고, \overline{EF} 에 생긴 교점을 G 라고 하면



 $\overline{\mathrm{EG}} = 8$ 이다. $\overline{CF}:\overline{CD}=3:5$, $\overline{GF}:\overline{AD}=3:5$ 이므로 $\overline{GF}:10=3:5$,

 $\overline{\mathrm{GF}}=6$ 이다.

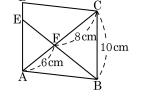
 $\therefore \ \overline{\mathrm{EF}} = 8 + 6 = 14$

다음 그림과 같이 사다리꼴의 두 대각선의 교점 O 를 지나고 밑변에 4. 평행한 직선이 사다리꼴과 만나는 점을 각각 $P,\ Q$ 라 할 때, \overline{PO} 의 길이는? (단, $\overline{\mathrm{AD}}=3\mathrm{cm},\ \overline{\mathrm{BC}}=4\mathrm{cm}$)

- ① $\frac{8}{7}$ cm ② $\frac{10}{7}$ cm ④ $\frac{14}{7}$ cm
- $3 \frac{12}{7} \text{cm}$

$\overline{\mathrm{AP}}:\overline{\mathrm{AB}}=\overline{\mathrm{PO}}:\overline{\mathrm{BC}}$ 이다.

 $\overline{\mathrm{AP}}:\overline{\mathrm{AB}}=3:7$ 이므로

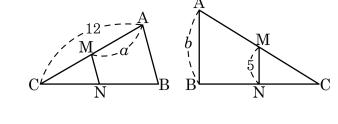

 $3:7 = \overline{PO}:4$ 따라서 $\overline{PO} = \frac{12}{7}$ (cm) 이다.

다음은 평행사변형이다. 선분 AE의 길이를 **5.** 구하면?

①7.5cm 4 8.5cm

② 6.5cm ⑤ 9.5cm

③ 5.5cm

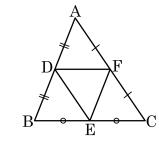


해설

△AFE ∽ △CFB 이므로 $6:8=\overline{AE}:10$

 $\therefore \overline{\rm AE} = 7.5 \rm cm$

6. 다음 그림의 $\triangle ABC$ 에서 \overline{AC} , \overline{BC} 의 중점을 각각 M, N이라고 할 때, a+b 의 값은?


⑤ 18

① 6 ② 8 ③ 10 ④ 16

 $\overline{AM} = \frac{1}{2}\overline{AC} = 6, \ a = 6$

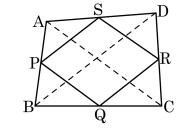
 $\overline{AB} = 2\overline{MN} = 10, \ b = 10$ ∴ a + b = 6 + 10 = 16

7. 다음 그림에서 $\triangle ABC$ 의 각 변의 중점을 이어 만든 $\triangle DEF$ 의 둘레의 길이가 20cm 일 때, ΔABC 의 둘레의 길이는?

40cm

 \bigcirc 48cm

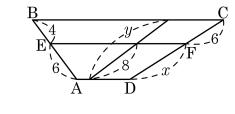
중점연결정리에 의해


 $\overline{\mathrm{DE}} = \frac{1}{2}\overline{\mathrm{AC}}, \overline{\mathrm{EF}} = \frac{1}{2}\overline{\mathrm{BA}}, \overline{\mathrm{FD}} = \frac{1}{2}\overline{\mathrm{CB}}$ 이다. $\Delta\mathrm{DEF}$ 의 둘레의 길이는

① 30 cm ② 32 cm ③ 36 cm

 $\overline{\mathrm{DE}} + \overline{\mathrm{EF}} + \overline{\mathrm{FD}} = \frac{1}{2}(\overline{\mathrm{AC}} + \overline{\mathrm{BA}} + \overline{\mathrm{CB}}) = 20(\,\mathrm{cm})$ 이므로 $\triangle \mathrm{ABC}$

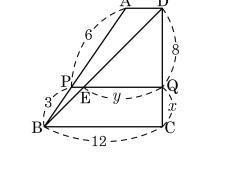
의 둘레의 길이는 $\overline{AB} + \overline{BC} + \overline{CA} = 40 (\text{ cm}) \text{ 이다.}$


다음 그림과 같은 □ABCD 의 네 변의 중점을 연결하여 만든 □PQRS 8. 의 둘레의 길이가 30cm 일 때, $\overline{AC} + \overline{BD}$ 를 구하면?

- ① 15
- ② 20
- 325
- **4** 28

중점연결정리에 의해 $\frac{1}{2}\overline{AC}=\overline{SR}=\overline{PQ}$, $\frac{1}{2}\overline{BD}=\overline{PS}=\overline{QR}$ \therefore (\Box PQRS의 둘레의 길이) = $\overline{SR} + \overline{PQ} + \overline{PS} + \overline{QR} = \overline{AC} + \overline{BD} =$

다음 그림과 같이 $\overline{
m AD}$ // $\overline{
m EF}$ // $\overline{
m BC}$ 라 할 때, xy 의 값은? 9.


2120 ① 110 ③ 130 ④ 140 ⑤ 150

6:4=x:6,

$$x = 9$$

$$6: 4 = x: 6, x = 9 10: 6 = y: 8, 6y = 80, y = $\frac{40}{3}$
 $\therefore xy = 9 \times \frac{40}{3} = 120$$$

10. 다음 그림에서 $\overline{\mathrm{AD}} / / \overline{\mathrm{PQ}} / / \overline{\mathrm{BC}}$ 일 때, x+y 의 값은?

① 10

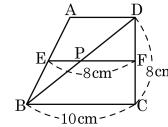
② 11

312

4 13

⑤ 14

6:3=8:x


x=4

6:9=y:12

y = 8

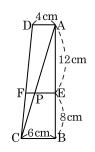
 $\therefore x + y = 12$

11. 다음 그림과 같은 사다리꼴 ABCD 에서 $\overline{AD}//\overline{EF}//\overline{BC}$ 이고 점 F 는 \overline{CD} 의 중점이다. $\overline{BC}=10\mathrm{cm},\ \overline{CD}=8\mathrm{cm},\ \overline{EF}=8\mathrm{cm}$ 일 때, ΔBPE 의 넓이는?

 $4 \ 10 \text{cm}^2$

② 5cm^2 ③ 12cm^2

 36cm^2

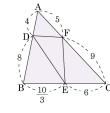

 $\overline{PF}:\overline{BC}=1:2$ 이므로 $\overline{PF}=5$ cm, 따라서 $\overline{EP}=3$ cm, $\overline{FC}=4$ cm,

 $\therefore \Delta BPE = 3 \times 4 \times \frac{1}{2} = 6(cm^2)$

12. 다음 그림과 같이 \overline{AD} // \overline{EF} // \overline{BC} 일 때, \overline{EF} 의 길이는?

① 5.2cm ④ 5.5cm

- ② 5.3cm ⑤ 5.6cm
- ③ 5.4cm

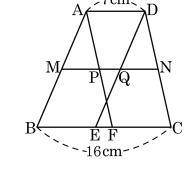

 $12:20 = \overline{EP}:6$

해설

 $20\overline{EP} = 72, \overline{EP} = 3.6(cm)$ $8: 20 = \overline{PF}: 4$

 $\begin{array}{|c|c|c|}\hline 20\overline{\rm PF} = 32, \overline{\rm PF} = 1.6 (\rm cm)\\ \hline \therefore \overline{\rm EF} = 3.6 + 1.6 = 5.2 (\rm cm)\\ \hline \end{array}$

13. 다음 그림에서 $\overline{
m DE}$, $\overline{
m EF}$, $\overline{
m FD}$ 중에서 ${\it \triangle}{
m ABC}$ 의 변에 평행한 선분의 길이는?



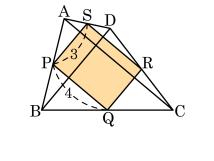
- ① $\frac{52}{7}$ ② $\frac{54}{7}$ ③ $\frac{57}{5}$ ④ $\frac{60}{5}$ ⑤ $\frac{63}{5}$

 $9:6=5:rac{10}{3}$ 이므로 $\overline{
m FE}\,/\!/\,\overline{
m AB}$

 $\overline{\text{CF}} : \overline{\text{CA}} = \overline{\text{FE}} : \overline{\text{AB}} , 9 : 14 = \overline{\text{FE}} : 12$ $14\overline{\text{FE}} = 108$ $\therefore \overline{\text{FE}} = \frac{54}{7}$

14. 다음 사다리꼴 ABCD에서 점 M, N은 각각 \overline{AB} , \overline{CD} 의 중점이고 $\overline{AB}//\overline{DE}$, $\overline{AF}//\overline{DC}$ 이다. $\overline{AD}=7\mathrm{cm}$, $\overline{BC}=16\mathrm{cm}$ 일 때, \overline{PQ} 의 길이를 바르게 구한 것은?

4 2.5cm


① 1cm

② 1.5cm ③ 3cm ③ 2cm

 $\overline{\rm MN} = \frac{7+16}{2} = 11.5$

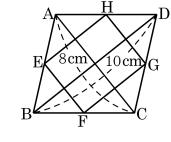
 $\overline{\overline{MQ}} = \overline{\overline{PN}} = \overline{AD} = 7(cm)$ $\overline{\overline{PQ}} = 7 + 7 - 11.5 = 2.5(cm)$

15. 다음 그림과 같은 $\square ABCD$ 에서 \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} 의 중점을 각각 P, Q, R, S 라할 때, $\overline{AC} + \overline{BD}$ 의 값은?

① 10

② 12

314


4 16

⑤ 18

해설

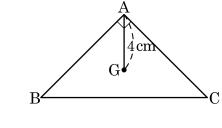
중점연결정리에 의해 $\overline{AC}=2\overline{PQ}=2\times 4=8, \ \overline{BD}=2\overline{PS}=2\times 3=6$ $\therefore \overline{AC}+\overline{BD}=14$

16. 다음 그림과 같은 □ABCD 는 평행사변형이다. $\overline{AC}=8cm$, $\overline{BD}=10cm$ 이고, \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} 의 중점을 각각 E, F, G, H 라 할 때, □EFGH 의 둘레의 길이는?

③ 20cm

④ 22cm

 \bigcirc 24cm


 $\overline{\overline{EH}} = \overline{FG} = \frac{1}{2}\overline{BD} = \frac{1}{2} \times 10 = 5 \text{ (cm)}$ $\overline{\overline{EF}} = \overline{\overline{HG}} = \frac{1}{2}\overline{\overline{AC}} = \frac{1}{2} \times 8 = 4 \text{ (cm)}$

②18cm

① 16cm

 \therefore (\Box EFGH의 둘레의 길이) = \overline{EF} + \overline{FG} + \overline{GH} + \overline{HE} = 4+5+4+5=18 (cm)

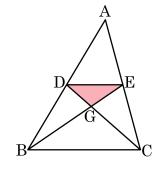
17. 그림에서 $\angle A=90$ ° 인 직각삼각형 ABC의 무게중심을 G라 한다. $\overline{\mathrm{AG}}=4\mathrm{cm}$ 일 때, $\overline{\mathrm{BC}}$ 의 길이는?

① 6cm

② 8cm

 \Im 10cm

4 12cm


⑤ 16cm

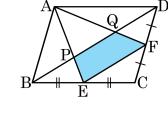
해설 점 A 에서 무게중심 G 를 지나는 직선이 \overline{BC} 와 만나는 점을 D

라고 하면, $\overline{\mathrm{AG}}:\overline{\mathrm{GD}}=2:1$ 이므로, $2:1=4:\overline{\mathrm{GD}},\ \overline{\mathrm{GD}}=2(\mathrm{cm}),$

 $\overline{AD} = \overline{AG} + \overline{GD} = 6(cm)$ $\overline{\mathrm{AD}} = \overline{\mathrm{BD}} = \overline{\mathrm{CD}}$ 이므로 $\overline{\mathrm{BC}} = 12 (\mathrm{cm})$ 이다.

18. 다음 그림에서 점 G는 \triangle ABC의 무게중심이고, \triangle ABC = $24 \mathrm{cm}^2$ 일 때, \triangle DGE의 넓이를 구하면?

 $2 cm^2$ 4 8cm^2


 \bigcirc 10cm^2

 2 4cm^2

 $\odot 6 \text{cm}^2$

 ΔBDE 에서 \overline{BG} : $\overline{GE}=2:1$ 이므로 $\Delta BDG: \Delta DGE=2:1$ 그런데 $\Delta BGD=\frac{1}{6}\Delta ABC$ 이므로 $\Delta DGE=\frac{1}{2}\times\frac{1}{6}\Delta ABC=2(\ cm^2)$ 이다.

 ${f 19}$. 다음 그림과 같이 평행사변형 ABCD 에서 E, F는 각각 $\overline{
m BC},\overline{
m DC}$ 의 중점이고, $\square ABCD$ 의 넓이는 $120 cm^2$ 이다. 이 때, $\square PEFQ$ 의 넓이를 구하면?

 \bigcirc 20cm² $40 \, \mathrm{cm}^2$ 25cm^2 \bigcirc 45cm²

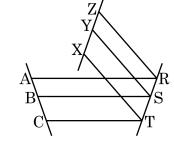
 30cm^2

점 P 가 △ABC 의 무게중심이므로

해설

 $\overline{\mathrm{AP}}: \overline{\mathrm{PE}} = 2 \ : \ 1$ 이고 $\overline{\mathrm{PQ}}//\overline{\mathrm{EF}}$

⇒ △APQ ∽ △AEF (AA 닮음)


닮음비가 2:3이므로 넓이의 비는

 $4:9\cdots$ ① 또, $\overline{BP} = \overline{PQ} = \overline{QD}$ 이므로

 $\triangle APQ = \frac{1}{6} \square ABCD = 20 \cdots$ 따라서 ①, ⓒ에서

△APQ : □PEFQ = 4 : 5 이므로 $\Box \mathrm{PEFQ} = \frac{5}{4} \times 20 = 25 (\,\mathrm{cm^2})$ 이다.

20. 다음 그림에서 \overline{AR} // \overline{BS} , \overline{BS} // \overline{CT} , \overline{RZ} // \overline{SY} , \overline{SY} // \overline{TX} , $\overline{AB}:\overline{BC}=3:4$ 일 때, $\overline{XY}:\overline{XZ}$ 를 구하면?

① 3:7 ② 4:3

34:7

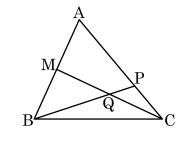
4 7:4

⑤ 3:4

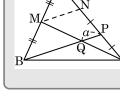
 $\overline{XY}:\overline{XZ}=\overline{TS}:\overline{TR}=\overline{CB}:\overline{CA}=4:7$

해설

 $\therefore \ \overline{XY} : \overline{XZ} = 4 : 7$


21. 다음 그림에서 $\angle B = \angle C = 90^{\circ}$ 일 때, $\triangle PBC$ 의 넓이는?

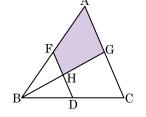
- $4 50 \text{cm}^2$
- \bigcirc 30cm^2 \bigcirc 60cm^2
- $3 40 \text{cm}^2$


점 P 에서 \overline{BC} 에 내린 수선의 발을 H라 하면 $\overline{AB}//\overline{PH}//\overline{DC}$ 이므로 $\overline{PH} = \frac{\overline{AB} \times \overline{DC}}{\overline{AB} + \overline{DC}} = \frac{12 \times 20}{12 + 20} = \frac{15}{2} \text{(cm)}$ 이다. $\therefore \Delta PBC = \frac{1}{2} \times \overline{PH} \times \overline{BC} = \frac{1}{2} \times \frac{15}{2} \times 16 = 60 \text{(cm}^2)$

22. 다음 그림에서 점 M 은 \overline{AB} 의 중점이고 \overline{AP} : \overline{PC} = 2:1 일 때, $\overline{PQ}: \overline{PB}$ 는?

21:4 ① 1:3 ③ 2:3 ④ 2:5 ⑤ 3:5

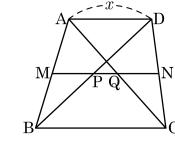
 $\overline{
m AP}$ 의 중점을 N 이라하고 $\overline{
m PQ}=a$ 하면, $\overline{
m MN}=2a$ 이고, $\overline{
m BP}=$ 4a 이므로, $\overline{PQ}: \overline{PB} = a: 4a = 1: 4$ 이다.



23. \triangle ABC 에서 점 D, F, G 는 각각 세 변의 중점이다. $\triangle FBH = 6 \, \mathrm{cm}^2$ 일 때, $\Box AFHG$ 의 넓이는?

① $12 \,\mathrm{cm}^2$ ② $15 \,\mathrm{cm}^2$ $3 16 \,\mathrm{cm}^2$ $418\,\mathrm{cm}^2$

 $\odot 20\,\mathrm{cm}^2$



해설 점 F, G 는 각각 \overline{AB} , \overline{AC} 의 중점이므로

 $\overline{\mathrm{FG}} /\!/ \overline{\mathrm{BC}}$ 이코 $\Delta \mathrm{HFG} \equiv \Delta \mathrm{HDB}$ 이다. 따라서 $\overline{BH} = \overline{HG}$ 이므로 $\Delta FBH = \Delta FHG = 6 \text{ (cm}^2)$ 이다. 그리고 $\triangle GFB = \triangle GFA = 12 \, \mathrm{cm}^2$

따라서 $\square AFHG = \triangle HFG + \triangle GFA = 18 \, \mathrm{cm}^2$

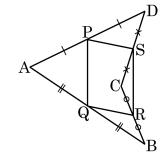
24. 다음 그림의 사다리꼴 ABCD 에서 \overline{AB} , \overline{DC} 의 중점이 각각 M , N 이고 \overline{AD} + \overline{BC} = 36 , \overline{MP} : \overline{PQ} = 7 : 4 일 때, x의 값은?

① 11

② 12 ③ 13

⑤ 15

 $\overline{\mathrm{AD}} = x \; , \; \overline{\mathrm{BC}} = 36 - x \; 라$ 하면


 $\overline{\rm MP}=\frac{1}{2}\overline{\rm AD}=\frac{1}{2}x$, $\overline{\rm MQ}=\frac{1}{2}\overline{\rm BC}=\frac{1}{2}(36-x)$

$$\overline{MP} = \frac{1}{2}AD = \frac{1}{2}x$$
, $\overline{MQ} = \frac{1}{2}BC = \frac{1}{2}(36 - 1)$
 $\overline{MP} : \overline{MQ} = 7 : 11$ 이므로

$$\frac{1}{2}x : \frac{1}{2}(36 - x) = 7 : 11$$
∴ $x = 14$

$$\begin{array}{c} 2 & 2 \\ \therefore & x = 14 \end{array}$$

25. 다음 그림과 같이 $\overline{AP} = \overline{PD}$, $\overline{AQ} = \overline{QB}$, $\overline{BR} = \overline{RC}$, $\overline{CS} = \overline{SD}$ 인 네 점을 잡아 사각형 PQRS 를 만들었다. 다음 설명 중 옳은 것은?

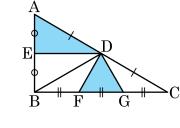
아니다. ⓒ 사각형 PQRS 는 평행사변형이다.

 \bigcirc 점 A, B, C, D 를 연결하여 만든 도형은 사각형이

- © 삼각형 APQ 는 정삼각형이다.
- ② 삼각형의 중점연결정리에 따라 $2 \times \overline{PS} = \overline{AB}$ 이다.
- $@ \overline{\mathrm{PQ}}$ 와 $\overline{\mathrm{SR}}$ 은 서로 평행하고, 길이가 같다.
- 해설

점 B 와 D 를 연결하면 삼각형의 중점연결정리에 의하여

 $\triangle ABD$ 에서 $\overline{PQ} = \frac{1}{2}\overline{BD}$, $\overline{PQ} /\!\!/ \overline{BD}$

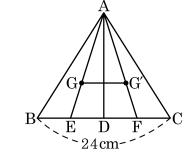

 $\triangle CBD$ 에서 $\overline{RS} = \frac{1}{2}\overline{BD}$

 $\overline{\mathrm{RS}} /\!/ \overline{\mathrm{BD}}$ $\therefore \overline{\mathrm{PQ}} = \overline{\mathrm{SR}}, \overline{\mathrm{PQ}} /\!/ \overline{\mathrm{RS}}$

따라서 pPQRS 는 한 쌍의 대변이 평행하고 그 길이가 같으므로

평행사변형이다.

26. 다음 그림에서 \overline{BD} 는 $\triangle ABC$ 의 중선이고, 점 E 는 \overline{AB} 의 이등분 점, F, G 는 \overline{BC} 의 삼등분점이다. $\triangle ABC = 24 cm^2$ 일 때, $\triangle AED$ 와 $\triangle DFG$ 의 넓이의 합은?


- 10cm^2 $4 \quad 16 \text{cm}^2$
- \Im 18cm^2
- $3 14 \text{cm}^2$
- · 1001

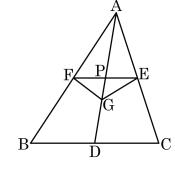
 $2 12 \text{cm}^2$

BD 가 △ABC 의 중선이므로 △ABD 와 △BCD 는 각각 12cm² 이

다. 점 E 는 \overline{AB} 의 이등분점이므로 $\triangle AED = 6 \mathrm{cm}^2$, 점 F, G는 \overline{BC} 의 상등분점이므로 $\triangle DFG = \frac{1}{3} \triangle BCD = \frac{1}{3} \times 12 = 4 (\mathrm{cm}^2)$ 이다. 따라서 $\triangle AED$ 와 $\triangle DFG$ 의 넓이의 합은 $6+4=10 (\mathrm{cm}^2)$ 이다.

 ${f 27}.$ 다음 그림과 같은 이등변삼각형 ABC에서 밑변 BC의 중점을 D , \triangle ABD와 \triangle ADC의 무게중심을 각각 G , G'이라 할 때, $\overline{GG'}$ 의 길이

① 5cm

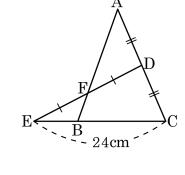

② 6cm ③ 7cm

48cm

⑤ 9cm

 $\overline{\mathrm{BE}} = \overline{\mathrm{DE}}, \ \overline{\mathrm{DF}} = \overline{\mathrm{CF}}$ 이므로 $\overline{\mathrm{EF}} = \frac{1}{2} \ \overline{\mathrm{BC}} = 12 (\mathrm{cm})$ $\overline{AE}: \overline{AG} = 3: 2 = 12: \overline{GG'}$ $\therefore \overline{GG'} = 8(cm)$

28. 다음 그림에서 점 G 는 $\triangle ABC$ 의 무게중심이다. 점 F, E 는 \overline{AB} , \overline{AC} 의 중점이고 $\overline{AP}=\overline{DP}$ 이고 $\triangle FGE=3cm^2$ 일 때, $\triangle ABC$ 의 넓이를 구하여라.


 $4 34 \, \mathrm{cm}^2$

- $236 \, \text{cm}^2$ $46 \, \text{cm}^2$
- $348 \,\mathrm{cm}^2$

 $\triangle FGE = \frac{1}{4} \square AFGE = \frac{1}{4} \times \frac{1}{3} \times \triangle ABC = \frac{1}{12} \times \triangle ABC$

 $\Delta ABC = 12 \times \Delta FGE = 12 \times 3 = 36 \text{ (cm}^2\text{)}$

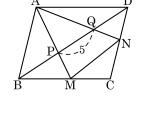
29. 다음 그림에서 $\overline{AD}=\overline{DC},\overline{EF}=\overline{FD}$ 일 때, \overline{EB} 의 길이를 바르게 구한 것은?

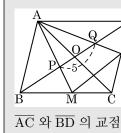
 \bigcirc 10 cm

3 8 cm 4 9 cm

다음 그림과 같이 $\overline{\mathrm{GD}}\,/\!/\,\overline{\mathrm{EC}}$ 가 되도록 점 G 를 잡으면

 $\Delta \mathrm{GFD} = \Delta \mathrm{BFE}(\mathrm{ASA합동})$ 이므로 $\overline{\mathrm{EB}} = \overline{\mathrm{DG}} \cdots \bigcirc$ 또, $\Delta \mathrm{ABC}$

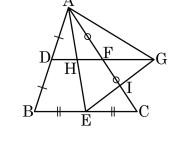

 \bigcirc 6 cm


 \bigcirc 7 cm

에서 $\overline{\mathrm{DG}} = \frac{1}{2}\overline{\mathrm{BC}}\cdots$ ①,ⓒ에서 $\overline{\mathrm{EB}}=\frac{1}{2}\overline{\mathrm{BC}}$ 이므로 $\overline{\mathrm{BC}}=2\overline{\mathrm{EB}}$

따라서 $\overline{EC} = \overline{EB} + \overline{BC} = \overline{EB} + 2\overline{EB} = 3\overline{EB} = 24$ $\therefore \overline{\mathrm{EB}} = 8 (\,\mathrm{cm})$

- 30. 다음 그림과 같은 평행사변형 ABCD 에서 점 $\mathrm{M,N}$ 은 각각 $\overline{\mathrm{BC}},\overline{\mathrm{DC}}$ 의 중점이다. $\overline{\mathrm{PQ}}=5$ 일 때, $\overline{\mathrm{MN}}$ 의 길이를 구하면?


 \overline{AC} 와 \overline{BD} 의 교점을 O 라고 하면 $\overline{AO}=\overline{CO}$ 이다. $\triangle ABC$ 에서 $\overline{AM},\overline{BO}$ 는 중선이므로 점P 는 무게중심이므로

 $\overline{PO} = \frac{1}{3}\overline{BO}$

점Q 도 \triangle ACD 의 무게중심이므로 $\overline{\mathrm{QO}} = \frac{1}{3}\overline{\mathrm{DO}}$,

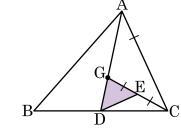
△BCD 에서 $\overline{BD} = 3\overline{PQ}$, $\overline{BD} = 3 \times 5 = 15$ ∴ $\overline{MN} = \frac{1}{2}\overline{BD} = \frac{15}{2}$

31. 다음 그림과 같은 $\triangle ABC$ 에서 점 D, E, F 은 각각 \overline{AB} , \overline{BC} , \overline{CA} 의 중점이고, \overline{DF} 의 연장선 위에 $\overline{DF}=\overline{FG}$ 가 되도록 점 G 를 잡을 때, 보기 중 옳은 것은 모두 고르면?

2 ¬, E 3 L, E 4 L, E 5 E, E

 \bigcirc $\triangle ABE$ 에서 삼각형의 중점연결 정리에 의하여 $\overline{AH}=\overline{HE}$

①, ©


해설

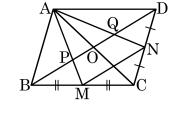
 $\therefore \overline{AE} = 2\overline{AH}$ \bigcirc $\triangle ABE$, $\triangle AEC$ 에서 삼각형의 중점연결 정리에 의하여 $\overline{DH} = \frac{1}{2}\overline{BE}$, $\overline{HF} = \frac{1}{2}\overline{EC}$

따라서 옳은 것은 ⑦,ⓒ이다. _____

그런데 $\overline{\mathrm{BE}}=\overline{\mathrm{EC}}$ 이므로 $\overline{\mathrm{DH}}=\overline{\mathrm{HF}}$

32. 다음 그림에서 점 G는 $\triangle ABC$ 의 무게중심이고, $\overline{GE}=\overline{CE}$ 이다. $\triangle ABC$ 의 넓이가 $36cm^2$ 일 때, $\triangle GDE$ 의 넓이를 구하면?

 $43 cm^2$


 \bigcirc 5cm²

- $2 4.5 \text{cm}^2$ \bigcirc 2.5cm²
- 3 4cm^2

 $\Delta GCD = \frac{1}{6} \Delta ABC = 6 (\text{ cm}^2)$ $\overline{GE} : \overline{EC} = 1 : 1$ 이므로

 $\Delta \mathrm{GDE} = \frac{1}{2}\Delta \mathrm{GCD} = 3(\,\mathrm{cm}^2)$ 이다.

33. 평행사변형 ABCD 의 두 변 BC, CD 의 중점을 각각 M, N 이라고 할 때, 다음 중 옳지 <u>않은</u> 것은?

① $\overline{BP} = \overline{PQ} = \overline{QD}$ ③ $6\square OPMC = \square ABCD$

② $\overline{BP} = 2\overline{OQ}$

④는 넓이는 같지만 합동은 아니다.