1. 다음 수 중에서 음의 정수의 개수를 a, 양의 정수의 개수를 b 라 할 때 a - b 를 구하여라.

$$-1\frac{1}{3}, \frac{12}{2}, 1\frac{3}{3}, -2, 5, 0.09, -\frac{6}{9}, 5\frac{2}{3}$$
$$-\frac{4}{4}, \frac{8}{6}, -5.69, -3, 1, -\frac{2}{15}, -\frac{10}{5}$$

▶ 답:

▷ 정답: 0

양의 정수는 자연수에 + 부호를 붙인 수이고, 음의 정수는 자연 수에 – 부호를 붙인 수이다.

구에 - 구오늘 눝인 구이다. $\frac{12}{2}=6$ 이므로 양의 정수이다. $-\frac{4}{4}=-1, -\frac{10}{5}=-2$ 이므로

| 2 | 으이 저수에 소하다

음의 정수에 속한다.

음의 정수는 -2, $-\frac{4}{4}$, -3, $-\frac{10}{5}$ 으로 4 개이므로 a=4, 양의 정수는 $\frac{12}{2}$, $1\frac{3}{2}$ 5, 1 으로 4 개이므로 b=4 이다.

따라서 a-b=0이다.

. 절댓값이 3.7이하인 정수가 <u>아닌</u> 것은?

① 0

- ② -3
- **3**+4

-2

) -1

-(해설

절댓값이 3.7이하인 정수이므로 절댓값이 0, 1, 2, 3인 정수가 아닌 것을 구하면 |+4| = 4이다.

- **3.** $-\frac{3}{2}$ 이상 $\frac{7}{4}$ 이하인 분모가 2인 유리수의 개수는?
 - ① 1개 ② 2개 ③ 3개 ④ 5개 ⑤ 6개

해설
$$-\frac{3}{2}\left(=-\frac{6}{4}\right) \leq x \leq \frac{7}{4}$$
인 분모가 2인 유리수 이므로
$$-\frac{6}{4}, -\frac{4}{4}, -\frac{2}{4}, \frac{2}{4}, \frac{4}{4}, \frac{6}{4}$$
의 6개 이다.

- . 다음 중 옳지 <u>않은</u> 것은?
 - \bigcirc $\frac{15}{3}$ 는 정수 아닌 유리수이다.
 - ② 1은 자연수이면서 유리수이다.
 - ③ 0은 자연수가 아니다.
 - ④ $-\frac{9}{2}$ 는 자연수가 아니다.
 - ⑤ 0은 정수이면서 유리수이다.

에 결 15

 $\frac{15}{3}$ 는 정수이다.

- 5. 다음 중 옳지 <u>않은</u> 것은?
 - ① 0은 정수이다.
 - ②-5 와 +3 사이에는 6 개의 정수가 있다.
 - ③ 음의 유리수, 0, 양의 유리수를 통틀어 유리수라고 한다.
 - ④ 유리수는 분모가 0 이 아닌 분수로 모두 나타낼 수 있다.
 - ⑤ 정수는 유리수이다.

해설

② -5 와 +3 사이에는 -4 , -3 , -2 , -1 , 0 , 1 , 2 의 7 개의 정수가 있다. **6.** 점 A 는 -7 보다 6 큰 수에 대응하고 점 B 는 8 보다 *a* 가 큰 수에 대응한다. 이 두 점 A, B 에서 같은 거리에 있는 점을 C(6) 라고 한다. 여기에서의 *a* 의 값을 구하여라.

답:

▷ 정답: 5

해설

7.
$$\frac{12}{x}$$
에서 분모가 절댓값이 5보다 작은 정수일 때, 정수인 $\frac{12}{x}$ 의 개수는?

$$x = -4, -3, -2, -1, 0, 1, 2, 3, 4$$
이므로

 $\frac{12}{x}$ 중 정수인 것은

 $-\frac{12}{4}, -\frac{12}{3}, -\frac{12}{2}, -\frac{12}{1}, \frac{12}{1}, \frac{12}{2}, \frac{12}{3}, \frac{12}{4}$ 이다.

 즉, -3, -4, -6, -12, 12, 6, 4, 3의 8개이다.

3. 절댓값이 같은 두 정수 *a*, *b* 사이의 거리가 16 이고 *a* > *b* 일 때, *a*, *b* 의 값을 각각 구하여라.

①
$$+4$$
, -4 ② $+8$, -8 ③ $+9$, -9 ④ $+12$, -12 ⑤ $+16$, -16

해설 절댓값이 같으므로 두 수는 원점에서 같은 거리에 있다. 두 수의 거리가
$$16$$
이므로 원점에서 두 수까지의 거리는 각각 8 이다. 따라서 $a > b$ 이므로 $a = 8$, $b = -8$

9. 절댓값이 같은 두 정수 a, b 에 대하여 a > b 이고, a 와 b 사이의 거리가 22 일 때, a, b 의 값을 바르게 구한 것을 고르면?

①
$$a = 22, b = 0$$

②
$$a = -11, b = 0$$

③
$$a = 0, b = -22$$

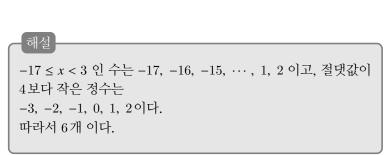
⑤ $a = 11, b = -11$

$$a = -11, b = 11$$

a, b 의 절댓값이 같으므로 두 수는 원점으로부터 반대방향으로

같은 거리에 있다. 두 수 사이의 거리가 22 이므로 원점에서 a, b 까지의 거리는 각각 $22 \div 2 = 11$ 이다.

a > b 이므로 a = 11, b = -11


- 10. 다음 중 옳은 것은?
 - ① a 가 음수일 때, a 의 절댓값은 a 이다.
 - ② a < b 이면 a 의 절댓값이 b 의 절댓값보다 작다.
 - ③a < b < 0 이면 a 의 절댓값이 b 의 절댓값보다 크다.
 - ④ 절댓값이 가장 작은 정수는 1 이다.
 - ⑤ a 가 유리수일 때, 절댓값이 a 인 수는 항상 2 개이다.

해설

- ① a 가 음수일 때, a 의 절댓값은 -a 이다.
- ② 반례: -3 < -2 이지만, -3 의 절댓값이 -2 보다 크다.
- ④ 절댓값이 가장 작은 정수는 0 이다.
- ⑤ 반례 : 0 은 유리수이지만 절댓값이 0 인 수는 0 하나 뿐이다.

11. 다음을 만족하는 정수 x 중에서 절댓값이 4보다 작은 정수는 모두 몇 개인가?

① 3개 ② 4개 ③ 5개 ④6개 ⑤ 7개

12. 다음 중 두 수의 대소 관계가 옳은 것을 골라라.

(1) 0 > 0.05

- $2 \frac{1}{3} < -\frac{1}{4}$

(3) |-1.2| > |-1.8|

4 + 3.7 > |-3.7|

(5) |-10| < 0

- ① 0 < 0.05
- $2 \frac{1}{3} = -\frac{4}{12}, -\frac{1}{4} = -\frac{3}{12}$ 이므로
- $-\frac{1}{3} < -\frac{1}{4}$ 이다.
- ③ | -1.2| = 1.2, | -1.8| = 1.8 이므로 |-1.2|<|-1.8|이다.
- ④ | 3.7| = 3.7 이므로
- +3.7 = | 3.7| 이다. ⑤ | - 10| = 10 이므로
- |-10|>0 이다.

13.
$$-1 < a < 0$$
 일 때 다음 중 가장 큰 수는?

①
$$a^2$$
 ② a ③ $-a$

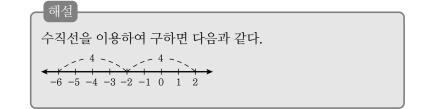
$$\bigcirc$$
 -a

$$a = -\frac{1}{2}$$

 $a=-rac{1}{2}$ 이라 하면 ① $a^2 = \frac{1}{4}$ ③ $-a = \frac{1}{2}$ ④ $-\frac{1}{a} = 2$ ⑤ $\frac{1}{a} = -2$

14. 절댓값이 $\frac{11}{3}$ 보다 크고 $\frac{27}{4}$ 보다 작은 정수는 모두 몇 개인가?

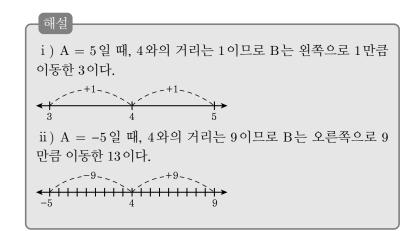
① 2 개 ② 4 개 ③ 5 개 <mark>④</mark> 6 개 ⑤ 7 개


$$\begin{bmatrix} \frac{11}{3} = 3\frac{2}{3}, & \frac{27}{4} = 6\frac{3}{4} & \text{이므로} \\ \text{조건을 만족하는 정수는 4, 5, 6} \\ \text{절댓값이 4 인 수는 +4, -4} \end{bmatrix}$$

절댓값이 5 인 수는 +5, -5 절댓값이 6 인 수는 +6, -6

.. 6개

15. 수직선에 2와 -6에 대응하는 두 점을 나타낸 후, 두 점에서 같은 거리에 있는 점에 대응하는 수를 구하여라.


16. 수직선에서 $-\frac{1}{3}$ 에 가장 가까운 정수를 a, $\frac{13}{5}$ 에 가장 가까운 정수를 b 라고 할 때, $a \times b$ 의 값을 구하여라.

해설
$$-\frac{1}{3}$$
 에 가장 가까운 정수는 0 이므로 $a=0$, $\frac{13}{5}=2.6$ 에 가장 가까운 정수는 3 이므로 $b=3$ 이다. 따라서 $a\times b=0$ 이다.

17. 수직선 위에서 두 정수 A , B 를 나타내는 점에서 같은 거리에 대응하는 수는 4 이고, |A| = 5 일 때, B 가 될 수 있는 값을 모두 구하여라.

▷ 정답: 3

➢ 정답: 13

18. 수직선 위에서 두 정수 A, B 로부터 같은 거리에 있는 좌표가 4 이고 A 의 절댓값의 크기가 5 일 때, B 가 될 수 있는 값을 모두 구하여라.

- ▶ 답:
- 답:
- ▷ 정답: 3 또는 +3

 ▷ 정답: 13 또는 +13

해설

A 의 절댓값의 크기가 5 일 때, A 의 값은 5 와 -5 이다. 먼저, A 가 5 라고 할 때 같은 거리에 있는 좌표 4와의 거리가 1 이므로 B 의 값은 4 에서 왼쪽으로 1 만큼 이동한 3 이 된다. 또, A 가 -5 라고 할 때 같은 거리에 있는 좌표와 거리가 9 이므로 B 의 값은 4 에서 오른쪽으로 9 만큼 이동한 13 이 된다. 따라서 B 가 될 수 있는 값은 3 과 13 이 된다. 19. 절댓값이 같고 부호가 다른 두 수가 있을 때, 두 수 중 수직선의 왼쪽 에 있는 수에서 오른쪽에 있는 수를 뺀 값이 -7 이다. 두 수 사이의 정수들의 합을 a, 두 수 사이의 정수들의 개수를 b 라고 하면 a+b 의 값은?

(4) 6

3

(2) 4

두 수가 7 만큼 떨어져 있으므로 원점으로부터 3.5 만큼씩 떨어져 있다. 따라서 두 수는
$$-3.5$$
 와 3.5 이고, 두 수 사이의 정수는 -3 , -2 , -1 , 0 , 1 , 2 , 3 이다. $a = (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 = 0$, $b = 7$ (개) 이므로 $a + b = 7$ 이다.

20. 두 정수 a, b 에 대하여 $\left| \frac{a}{5} \right| + \left| \frac{b}{5} \right| = 1$ 이 되는 a, b 는 몇 쌍인가?

21. 절댓값이 6 인 서로 다른 두 수 a, b 를 수직선에 나타낼 때, 두 점 사이를 삼등분하는 점 중 왼쪽에 있는 점이 나타내는 수를 c, 사등분하는 점 중 가장 오른쪽에 있는 점이 나타내는 수를 d 라고 할 때, 두 수 c 와 d 사이의 거리를 구하여라.

$$12 \div 4 = 3$$
 이므로 $+6 - 3 = 3 = d$

 $12 \div 3 = 4$ 이므로-6 + 4 = -2 = c

∴ (두 수 c,d 사이의 거리) = |3 - (-2)| = 5

22. 서로 다른 세 정수 a, b, c 가 다음을 만족한다. 큰 순서대로 나열하여라.

b 는 a 보다 크지 않다.
 c 의 절댓값이 a 의 절댓값보다 크다.
 c 는 2 보다 작지만 음수는 아니다.

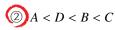
- 답:
- 답:
- 답:
- ▷ 정답: c
- ▷ 정답: a

 ▷ 정답: b

해설

1 이다.

 $b \vdash a$ 보다 크지 않다. $\Rightarrow b \le a$ c 의 절댓값이 a 의 절댓값보다 크다. $\Rightarrow |c| > |a|$ $c \vdash 2$ 보다 작지만 음수는 아니다. $\Rightarrow 0 < c < 2 \Rightarrow c \vdash 0$ 또는


c 의 절댓값은 0 또는 1 이므로 두 번째 식을 만족하려면 c=1 , a=0 이어야 한다.

u = 0 이익악 현역. ∴ b < a < c (문제에서 세 정수는 서로 다르다고 하였다.) **23.** 서로 다른 정수 A, B, C, D 가 다음을 만족할 때, A, B, C, D 의 대소 관계를 바르게 나타낸 것은?

- A 는 네 수 중 가장 작다.
- B 는 음수이다.
- A 와 C 는 수직선에 나타냈을 때, 원점까지의 거리가 같다.
 D 는 B 보다 작다.

 \Rightarrow A 가 가장 작으므로 B 보다 작은 음수이고. C 는 양수일 것

① A < B < C < D

해설

- A 는 네 수 중 가장 작다.
- *B* 는 음수이다. ⇒ *B* < 0
- B는 심구하여. → B
 A 와 C 는 수직선에 나타냈을 때, 원점까지의 거리가 같다.
- 이다. • *D* 는 *B* 보다 작다. ⇒ *D* < *B*
- *D* 는 *B* 모나 작나. ⇒ *D* < *I A* < *D* < *B* < *C*

24.
$$\left(+\frac{16}{3}\right) \div \left(-\frac{3}{7}\right) \times \left(-\frac{27}{14}\right)$$
의 약수 중 절댓값이 $\frac{9}{2}$ 이상 $\frac{49}{4}$ 이하인 정수의 개수를 구하여라.

 $\left(+\frac{16}{3}\right) \div \left(-\frac{3}{7}\right) \times \left(-\frac{27}{14}\right)$

$$= \left(+\frac{16}{3} \right) \times \left(-\frac{7}{3} \right) \times \left(-\frac{27}{14} \right) = 24$$
24의 약수는 1, 2, 3, 4, 6, 8, 12, 24이다.
이 중 절댓값이 $\frac{9}{2}$ 이상 $\frac{49}{4}$ 이하인 정수는 6, 8, 12이다.

25. a 와 b 의 거리는 9 이고, 수직선에서 두 수 a 와 b 에 대응하는 점의 가운데 있는 점이 $\frac{1}{2}$ 일 때, 2a+b 의 값은?(단, a < b)

①
$$-\frac{9}{2}$$
 ② -4 ③ -3 ④ $\frac{1}{2}$ ⑤ 2

$$a = \frac{1}{2} - \frac{9}{2} = -4, b = \frac{1}{2} + \frac{9}{2} = 5$$

$$\therefore a = -4, b = +5$$

$$\therefore 2a + b = 2 \times (-4) + (+5) = -3$$