1. 포물선
$$y = -x^2 + kx$$
 와 직선 $y = x + 1$ 이 서로 다른 두 점에서 만나기 위한 k 의 범위는?

①
$$k > 2, k < -1$$
 ② $k > 3, k < -1$ ③ $k > 1, k < -1$ ④ $k > 3, k < -2$ ⑤ $k > 3, k < -3$

해설
포물선과 직선이 다른 두 점에서 만나므로
$$-x^2 + kx = x + 1, x^2 + (1 - k)x + 1 = 0$$
에서
 $D = (1 - k)^2 - 4 > 0$
 $k^2 - 2k - 3 = (k - 3)(k + 1) > 0$

∴ k > 3 또는 k < -1

2. 직선 y = 3x + 2 와 포물선 $y = x^2 + mx + 3$ 이 두 점에서 만나기 위한 실수 m 의 범위를 구하면?

①
$$m < -1, m > 3$$
 ② $m < 1, m > 5$ ③ $-1 < m < 3$

해설
$$y = 3x + 2, y = x^2 + mx + 3 \text{ 에서 } y 를 소거하면$$
$$x^2 + (m-3)x + 1 = 0, D = (m-3)^2 - 4 > 0$$
$$m^2 - 6m + 5 > 0, (m-1)(m-5) > 0$$
$$\therefore m < 1, m > 5$$

3. 이차함수 $y = x^2 - 2ax - 2b^2 - 4a + 4b - 6$ 의 그래프가 x축에 접할 때, $a^2 + b^2$ 의 값은? (단, a,b는 실수)

$$x^{2} - 2ax - 2b^{2} - 4a + 4b - 6 = 0 에서$$

$$\frac{D}{4} = a^{2} - (-2b^{2} - 4a + 4b - 6) = 0$$

$$\therefore (a+2)^{2} + 2(b-1)^{2} = 0$$
이 때, a, b 가 실수이므로 $a+2=0, b-1=0$
따라서 $a=-2, b=1$ 이므로
$$a^{2} + b^{2} = 5$$

1. 함수
$$y = -x^2 + kx$$
의 그래프가 직선 $y = -x + 4$ 에 접할 때, 양수 k 의 값은?

① 1 ②
$$\frac{3}{2}$$
 ③ 2 ④ $\frac{5}{2}$ ⑤ 3

5. 이차함수 $y = x^2 - 2(k-1)x + 9$ 의 그래프가 x축과 만나지 않기 위한 정수 k의 개수는?

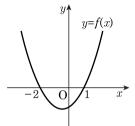
이차함수 $y = x^2 - 2(k-1)x + 9$ 의 그래프가 x축과 만나지

따라서. k값 중 정수인 것은 -1, 0, 1, 2, 3의 5개이다.

이차방정식
$$y = x^2 - 2(k-1)x + 9 = 0$$
의 판별식을 D 라 할 때 $D < 0$ 이어야 한다.
$$\frac{D}{4} = (k-1)^2 - 9 < 0$$
$$k^2 - 2k - 8 < 0, \quad (k+2)(k-4) < 0$$
$$\therefore -2 < k < 4$$

해설

않으려면


 이차함수 y = f(x) 의 그래프가 다음 그림과 같을 때, 이차함수 f(x+a) = 0 의 두 실근의 합이 5 가 되도록 하는 상수 a 의 값은?

② -2

③ -1

y = f(x+a) 의 그래프는 y = f(x) 의 그래프를 x 축의 방향으로

$$-a$$
 만큼 평행이동한 것이다. $y = f(x)$ 이 그래프가 x 축과 만나는 점의 좌표가 -2.1 이므로

$$y = f(x+a)$$
 의 그래프가 x 축과 만나는 점의 좌표는 $-2-a, 1-a$ 따라서, 방정식 $f(x+a) = 0$ 의 두 실근이 $-2-a, 1-a$ 이고 그 함이 5 이므로 $-2-a+1-a=5$

 $\therefore a = -3$

7. 이차함수 $y = x^2 + ax + 1$ 의 그래프와 직선 y = 3x - 8이 만나지 않도록 하는 실수 a의 값의 범위를 구하면?

①
$$-5 < a < -1$$
 ② $-3 < a < 9$ ③ $-1 < a < 4$
④ $2 < a < 6$ ⑤ $4 < a < 7$

해설
이차방정식
$$x^2 + ax + 1 = 3x - 8$$
,
즉 $x^2 + (a - 3)x + 9 = 0$ 이 이차방정식이 허근을 가져야 하므로
 $D = (a - 3)^2 - 4 \cdot 1 \cdot 9 < 0$
 $a^2 - 6a - 27 < 0$

(a+3)(a-9) < 0∴ -3 < a < 9 8. 이차함수 $y = x^2 - ax + k^2 + 2k$ 의 그래프와 직선 y = 2kx + b가 k의 값에 관계없이 서로 접할 때, 실수 a, b의 곱 ab의 값은?

① -6 ② -3 ③ -2 ④ 2 ⑤ 3

$$x^2 - ax + k^2 + 2k = 2kx + b$$
 에서
 $x^2 - (a + 2k)x + k^2 + 2k - b = 0$
이 이차방정식의 판별식을 D 라 하면
 $D = (a + 2k)^2 - 4(k^2 + 2k - b) = 0$
 $a^2 + 4ak - 8k + 4b = 0$
이 식이 k 의 값에 관계없이 성립하므로
 $4k(a - 2) + a^2 + 4b = 0$ 에서
 $a - 2 = 0, a^2 + 4b = 0$
따라서 $a = 2, b = -1$ 이므로 $ab = -2$

9. 직선 y = -x + 1을 x축의 방향으로 m만큼 평행이동 하였더니 이차 함수 $y = x^2 - 3x$ 의 그래프에 접하였다. 이때, 상수 m의 값은?

② -1

3 1

4)

⑤ 3

해설

직선
$$y = -x + 1$$
을 x 축의 방향으로 m 만큼 평행이동하면

$$y = -(x - m) + 1 = -x + m + 1$$

이 직선이 $y = x^2 - 3x$ 의 그래프와 접하므로

이차방정식
$$x^2 - 3x = -x + m + 1$$
,
즉, $x^2 - 2x - m - 1 = 0$ 에서

$$\frac{D}{4} = (-1)^2 - (-m - 1) = 0$$
$$2 + m = 0 \qquad \therefore m = -2$$

10. 이차함수 $y = 2x^2 - 3x + 1$ 의 그래프와 직선 y = ax + b의 두 교점의 x좌표가 각각 1, 5일 때, 상수 a, b의 곱 ab의 값은?

② −45

③ 0

Э

⑤ 14

해설
이차방정식
$$2x^2 - 3x + 1 = ax + b$$
, 즉 $2x^2 - (3+a)x + 1 - b = 0$

의 두 근이 1, 5이므로 근과 계수의 관계에 의하여
$$1+5=\frac{3+a}{2},\ 1\times 5=\frac{1-b}{2}$$

$$< 5 = \frac{1}{2}$$

$$\therefore a = 9, b = -9$$
$$\therefore ab = -81$$

11. 이차함수 $y = 2x^2 + ax + 12$ 의 그래프와 직선 y = 5x + b가 두 점 P, Q에서 만난다. 선분 PQ의 중점의 좌표가 (3, 17)일 때, a + b의 값은?

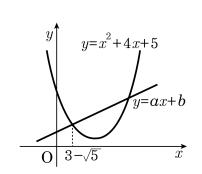
 $\bigcirc 2 -4 \qquad \bigcirc 3 -3$

(5) -1

두 점 P, Q 의 x 좌표를 각각 α , β 라고 하면 α , β 는 이차방정식 $2x^2 + ax + 12 = 5x + b$ 의 두 실근이다.

$$\alpha + \beta = -\frac{a-5}{2} \cdot \cdots \bigcirc$$

또. 선분 PQ의 중점의 x좌표가 3이므로 $\frac{\alpha+\beta}{2}=3$ 에서 $\alpha+\beta=6$ ····· ①


 $\therefore a = -7$

b=2a + b = -7 + 2 = -5

 $2x^2 + (a-5)x + 12 - b = 0$ 에서 근과 계수의 관계에 의하여

또, 점 (3, 17)은 직선 y = 5x + b 위의 점이므로 $17 = 5 \cdot 3 + b$::

12. 다음 그림과 같이 포물선 $y = x^2 - 4x + 5$ 와 직선 y = ax + b 의 두 교점 중 한 교점의 x 좌표가 $3 - \sqrt{5}$ 일 때, 유리수 a, b 의 합 a + b 의 값은?

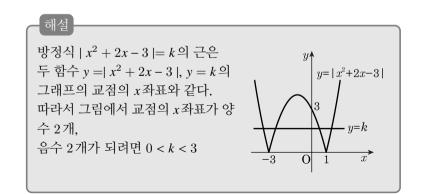
①3 ②4 ③5 ④6 ⑤7

연립방정식
$$y = x^2 - 4x + 5$$
, $y = ax + b$ 에서 $y = \Delta$ 거하면 $x^2 - 4x + 5 = ax + b$ $x^2 - (4 + a)x + 5 - b = 0 \cdots$ 이 때, 계수가 유리수인 방정식 ①의 한 근이 $3 - \sqrt{5}$ 이므로 $3 + \sqrt{5}$ 도 근이 된다. $\therefore (3 - \sqrt{5}) + (3 + \sqrt{5}) = 4 + a$

 $\therefore a = 2, b = 1$ $\therefore a + b = 3$

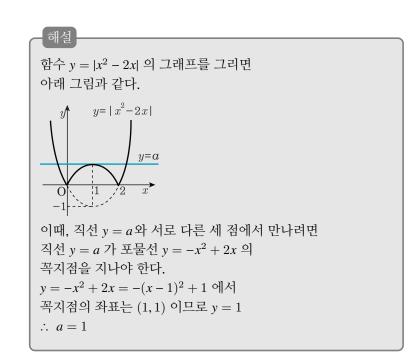
 $(3 - \sqrt{5})(3 + \sqrt{5}) = 5 - b$

해설

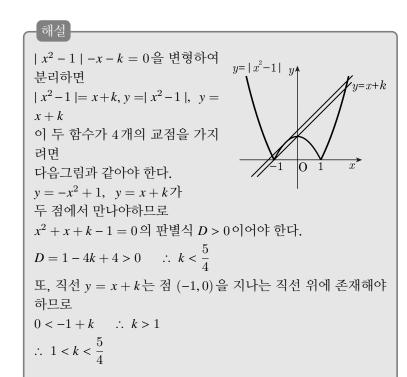

13. x에 대한 방정식 $|x^2 + 2x - 3| = k$ 가 양의 근 2개와 음의 근 2개를 갖도록 하는 상수 k의 값의 범위는?

① $k \ge 3$

② k > 4


③ $3 \le k < 4$

- 400 < k < 3


14. 함수 $y = |x^2 - 2x|$ 의 그래프와 직선 y = a 가 서로 다른 세 점에서 만나도록 하는 상수 a 의 값은?

$$\bigcirc 1 - \frac{1}{2} \qquad \bigcirc 2 \qquad \bigcirc 0 \qquad \bigcirc 3 \qquad \bigcirc \frac{1}{2} \qquad \bigcirc \bigcirc 1 \qquad \bigcirc \bigcirc$$

15. x에 관한 방정식 $|x^2 - 1| - x - k = 0$ 이 서로 다른 네 개의 실근을 가질 때, k의 값의 범위를 구하면?

①
$$1 < k < \frac{5}{4}$$
 ② $1 \le k \le \frac{5}{4}$ ③ $-5 < k < -\frac{5}{4}$ ④ $k < 1, k > \frac{5}{4}$ ⑤ $\frac{4}{5} < k < 1$

