
L. 다음 그림의 직각삼각형 ABC 에서
$$\sin x$$
 의 값은?
$$\underbrace{15}_{4} \underbrace{3}_{5} \underbrace{3}_{4} \underbrace{4}_{4} \underbrace{3}_{4} \underbrace{5}_{4} \underbrace{3}_{4} \underbrace{4}_{4} \underbrace{3}_{4} \underbrace{5}_{4} \underbrace{3}_{4} \underbrace{4}_{4} \underbrace{3}_{4} \underbrace{5}_{4} \underbrace{3}_{4} \underbrace{5}_{4} \underbrace{3}_{4} \underbrace{5}_{4} \underbrace{5}_{4}$$

다음 그림과 같은 직각삼각형 ABC 에서 $\cos A = \frac{3}{5}$ 이고, \overline{BC} 가 8 일 때, $\triangle ABC$ 의 넓이는?

⑤ 50

3 36

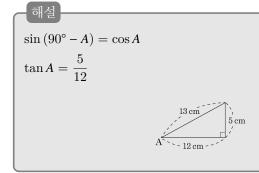
(4) 48

$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{5}$$
 이므로 $\overline{AC} = \frac{\overline{BC}}{\sin A}$ 이다.

또한,
$$\overline{AC} = \frac{8}{4} = 10$$
 이다.

피타고라스 정리에 의해 $\overline{AB} = \sqrt{10^2 - 8^2} = 6$ 이므로

따라서
$$\triangle ABC$$
 의 넓이는 $6 \times 8 \times \frac{1}{2} = 24$ 이다.


 $\cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{3}{5}$ 이므로 $\sin A = \frac{4}{5}$ 이다.

 $\sin(90^{\circ} - A) = \frac{12}{13}$ 일 때, $\tan A$ 의 값은? (단, $0^{\circ} < A < 90^{\circ}$)

$$\frac{5}{12}$$

$$\frac{5}{12}$$
 ② $\frac{5}{13}$ ③ $\frac{12}{5}$ ④ $\frac{13}{5}$

$$3\frac{12}{5}$$

- 직선 $y = \frac{2}{\kappa}x 1$ 이 x 축의 양의 방향과 이루는 예각의 크기를 A 라고 할 때, 다음 중 옳은 것은?
 - - $\Im \tan A = 2$

- 5. 다음 설명 중 옳지 <u>않은</u> 것은? (단, $0^{\circ} \le A \le 90^{\circ}$)
 - ① A의 값이 커지면 $\tan A$ 의 값도 커진다.
 - \bigcirc A의 값이 커지면 $\cos A$ 의 값도 커진다.
 - ③ A의 값이 커지면 sin A의 값도 커진다.
 - ④ sin A 의 최댓값은 1, 최솟값은 0이다.
 - ⑤ tan 90°의 값은 정할 수 없다.

해설

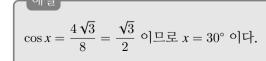
 $\angle A$ 의 크기가 커질수록 $\sin A$, $\tan A$ 의 값은 커지고 $\cos A$ 의 값은 작아진다.

6. 다음 중 옳지 않은 것은? (단,
$$A$$
, B 는 예각이다.)

$$(2) 1 - 2\sin^2 A = 2\cos^2 A - 1$$

$$(3)\sin(A+B) = \sin A + \sin B$$

$$(\sin A + \cos A)^2 + (\sin A - \cos A)^2 = 2$$


②
$$1 - 2\sin^2 A = 1 - 2(1 - \cos^2 A) = 2\cos^2 A - 1$$

$$4 \tan A + \frac{1}{\tan A} = \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}$$

$$= \frac{\sin^2 A + \cos^2 A}{\sin^2 A \cos A}$$

$$= \frac{1}{\sin A \cos A}$$

⑤
$$(\sin A + \cos A)^2 + (\sin A - \cos A)^2$$

= $1 + 2\sin A\cos A + 1 - 2\sin A\cos A = 2$

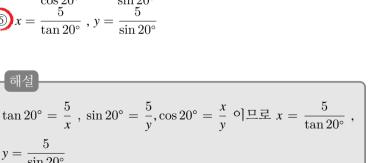
 40°

다음 직각삼각형에서 x, y의 값을 주어진 각과 변을 이용하여 삼각비로 나타낸 것은?

①
$$x = 5\sin 20^{\circ}$$
, $y = \frac{5}{\sin 20^{\circ}}$

②
$$x = \frac{5}{\tan 20^{\circ}}$$
, $y = 5\sin 20^{\circ}$

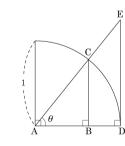
$$3x = \frac{1}{\tan 20^{\circ}}, y = \frac{1}{\cos 20^{\circ}}$$


$$4x = \frac{5}{\cos 20^{\circ}}, y = \frac{5}{\cos 20^{\circ}}$$

$$4) x = \frac{1}{\cos 20^{\circ}}, y = \frac{1}{\sin 20^{\circ}}$$

$$3 x = \frac{\tan 20^{\circ}}{5}, y = \frac{5}{\cos 20^{\circ}}$$

$$4 x = \frac{5}{\cos 20^{\circ}}, y = \frac{5}{\sin 20^{\circ}}$$


$$5 x = \frac{5}{\tan 20^{\circ}}, y = \frac{5}{\sin 20^{\circ}}$$

9. $(\sin 0^\circ + 3\cos 0^\circ) \times (\cos 90^\circ - 2\sin 90^\circ)$ 의 값을 A, $\tan 45^\circ \times \cos 0^\circ + \sin 90^\circ$ 의 값을 B 라 할 때, A ÷ B 의 값은?

$$A = (0+3\times1)\times(0-2\times1) = 3\times(-2) = -6$$
, $B = 1\times1+1=2$ 이므로 $A \div B = (-6) \div 2 = -3$

10. 다음 그림과 같이 반지름의 길이가 1 인 사분원이 있다. 다음 중 틀린 것은? $(단, \theta \vdash \text{예각})$

①
$$\sin \theta = \overline{BC}$$
 ② $\cos \theta = \overline{AB}$ ③ $\tan \theta = \overline{DE}$

$$(3) \sin \theta < \tan \theta$$

$$(5) \sin \theta = \cos \theta$$

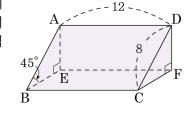
$$\triangle ADE$$
 에서 $\tan \theta = \frac{\overline{DE}}{\overline{AD}} = \overline{DE}(\because \overline{AD} = 1)$ $\sin \theta = \frac{\overline{BC}}{\overline{AC}} = \overline{BC}(\because \overline{AC} = 1)$ 이고

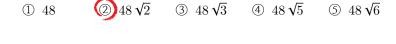
 $\overline{\mathrm{BC}} < \overline{\mathrm{DE}}$ 이므로 $\sin \theta < \tan \theta$

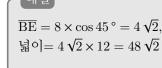
해설

11. $\sin x = 0.2419$, $\tan y = 0.2867$ 일 때, 다음에서 주어진 표를 보고 x + y의 값을 구하면?

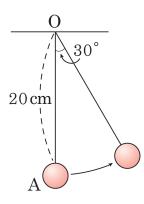
각도	sin	cos	tan
14°	0.2419	0.9703	0.2493
15°	0.2588	0.9659	0.2679
16°	0.2756	0.9613	0.2867
•••			

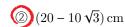

③ 31° ④ 32°

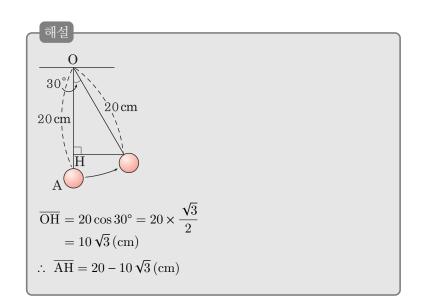

⑤ 33°


$$x = 14^{\circ}, y = 16^{\circ}$$

$$\therefore x + y = 14^{\circ} + 16^{\circ} = 30^{\circ}$$


12. 다음 그림과 같은 직사각형 모양의 널판지 ABCD 가 수평면에 대하여 45°만큼 기울어져 있다. 이 때, 직 사각형 EBCF 의 넓이는?



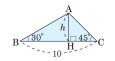

13. 다음 그림과 같이 실의 길이가 20cm 인 진자가 \overline{OA} 와 30° 의 각을 이룬다. 진자는 처음 위치를 기준으로 몇 cm 의 높이에 있는지 구하면?

- ① 30 cm
- ③ $(20-10\sqrt{6})$ cm
- ⑤ $30\sqrt{6}$ cm

④ $30\sqrt{2}$ cm

14. 다음 그림에서 x 의 길이를 구하면?

①
$$4\sqrt{2}$$
 ② $4\sqrt{3}$ ③ $4\sqrt{5}$ ④ $4\sqrt{7}$ ⑤ $4\sqrt{11}$


$$\overline{AH} = 12\sin 60^{\circ} = 12 \times \frac{\sqrt{3}}{2} = 6\sqrt{3}$$

$$\overline{BH} = 12\cos 60^{\circ} = 12 \times \frac{1}{2} = 6$$

$$\overline{CH} = 8 - 6 = 2$$

 $x = \sqrt{(6\sqrt{3})^2 + 2^2} = \sqrt{108 + 4} = \sqrt{112} = 4\sqrt{7}$

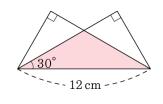
15. 다음 \triangle ABC 에서 높이 h는?

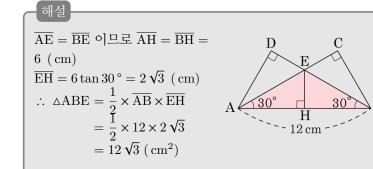
①
$$2(\sqrt{3}-1)$$

②
$$3(\sqrt{3}-1)$$
 ③ $4(\sqrt{3}-1)$

③
$$4(\sqrt{3}-1)$$

$$4)5(\sqrt{3}-1)$$


⑤
$$6(\sqrt{3}-1)$$


$$h = \frac{10}{\tan 60^{\circ} + \tan 45^{\circ}}$$

$$= \frac{10}{\sqrt{3} + 1}$$

$$= 5(\sqrt{3} - 1)$$

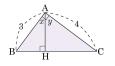
16. 다음 그림과 같이 합동인 두 직각삼각형 의 빗변을 겹쳐 놓았을 때, 겹쳐진 부분의 넓이를 구하여라.

① $12\sqrt{2}$ (cm²) ② $12\sqrt{3}$ (cm²) ③ $24\sqrt{2}$ (cm²)

17. 다음 그림의 평행사변형 ABCD 에서 ∠A = 135° , $\overline{AB} = 6 \text{cm}$, $\overline{BC} = 8 \text{cm}$ 이다. \overline{CD} 의 중점을 E 라 할 때, ΔBDE 의 넓이를 구 하면?

①
$$24\sqrt{2} \text{ cm}^2$$

①
$$24\sqrt{2} \text{ cm}^2$$
 ② $24\sqrt{3} \text{ cm}^2$
④ $12\sqrt{3} \text{ cm}^2$ ③ $6\sqrt{2} \text{ cm}^2$


$$3 12\sqrt{2}\,\mathrm{cm}^2$$

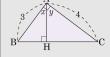
구하는 넓이는 평행사변형의 넓이의 $\frac{1}{4}$ 이다.

평행사변형의 넓이는 $6 \times 8 \times \sin 45^{\circ} = 48 \times \frac{\sqrt{2}}{2} = 24\sqrt{2}$

$$\therefore$$
 구하는 넓이는 $24\sqrt{2} \times \frac{1}{4} = 6\sqrt{2} (\,\mathrm{cm}^2)$ 이다.

18. 다음 그림에서 $\sin x + \cos y$ 의 값은?

- ① $\frac{5}{2}$ ② $\frac{7}{3}$ ③ $\frac{3}{2}$


 $\overline{BC} = 5$ 이므로 $\overline{AH} \times 5 = 12$

$$\therefore \overline{\mathrm{AH}} = \frac{12}{5}$$

$$\therefore \cos y = \frac{\overline{AH}}{4} = \frac{3}{5}$$

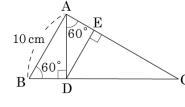
 $\sin x + \cos y = \sin(90^\circ - y) + \cos y$

$$=2\cos y = \frac{6}{5}$$

19. 다음 그림과 같이 한 변의 길이가 2 인 정사면체 A - BCD 에서 \overline{BC} 의 중점을 E 라 하고, $\angle AED = x$ 일 때. $\cos x$ 의 값은?

$$\bigcirc \frac{1}{3}$$

$$\frac{1}{3}$$


$$3\frac{1}{4}$$
 $4\frac{1}{5}$

 $\overline{\text{BE}} = 1$ 이고 점 H 는 $\triangle BCD$ 의 무게중심이므로 $\overline{\text{EH}} = \frac{1}{2}\overline{\text{ED}}$,

$$\overline{ED} = \sqrt{3}$$

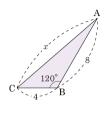
$$\overline{EH} = \frac{1}{3} \times \sqrt{3} = \frac{\sqrt{3}}{3}, \overline{AE} = \sqrt{3}$$

$$\cos x = \frac{\overline{\overline{EH}}}{\overline{AE}} = \frac{\frac{\sqrt{3}}{3}}{\frac{3}{\sqrt{3}}} = \frac{\sqrt{3}}{3\sqrt{3}} = \frac{1}{3}$$
 이다.

①
$$4\sqrt{3}$$
 cm

해설

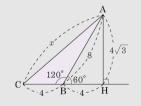
때, CE 의 길이는?


①
$$4\sqrt{3} \text{ cm}$$
 ② $5\sqrt{3} \text{ cm}$ ④ $\frac{12\sqrt{3}}{5} \text{ cm}$ ③ 5 cm

$$\triangle ABD$$
 에서 $\overline{AD} = \overline{AB} \cdot \sin 60^{\circ} = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3}$
 $\triangle ADE$ 에서 $\overline{DE} = \overline{AD} \cdot \sin 60^{\circ} = 5\sqrt{3} \times \frac{\sqrt{3}}{2} = \frac{15}{2}$

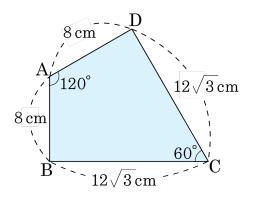
$$\triangle ADE$$
 에서 $\overline{DE} = \overline{AD} \cdot \sin 60^{\circ} = 5\sqrt{3} \times \frac{\sqrt{3}}{2} = \frac{15}{2}$

$$\triangle DCE 에서 \overline{CE} = \frac{\overline{DE}}{\tan 30^{\circ}} = \frac{15}{2} \times \sqrt{3} = \frac{15\sqrt{3}}{2} \text{(cm)}$$


21. 다음 그림의 $\triangle ABC$ 에서 \overline{AC} 의 길이는?

- ② $6\sqrt{2}$ ③ $3\sqrt{7}$ ④ $7\sqrt{2}$

점 A 에서 내린 수선과 \overline{BC} 의 연장선이 만나는 점을 H 라 할 때



 $\overline{AH} = 8 \times \sin 60^{\circ} = 4\sqrt{3}$

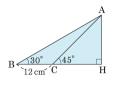
 $\overline{BH} = 8 \times \cos 60^{\circ} = 4$

 $\therefore \overline{AC} = \sqrt{(4\sqrt{3})^2 + 8^2} = 4\sqrt{7}$

22. 다음 그림과 같은 사각형 ABCD 의 넓이는?

- ① $110\sqrt{3}$ cm²
- ② $120\sqrt{3}$ cm²
- ③ $130\sqrt{3}$ cm²

- $4124 \sqrt{3} \text{cm}^2$
- ⑤ $150\sqrt{3}$ cm²


점 B 와 점 D 를 연결하면

$$=\frac{1}{2} \times 8 \times 8 \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times 12\sqrt{3} \times 12\sqrt{3} \times \frac{\sqrt{3}}{2}$$

 $=\frac{1}{2} \times 8 \times 8 \times \sin 120^{\circ} + \frac{1}{2} \times 12\sqrt{3} \times 12\sqrt{3} \times \sin 60^{\circ}$

$$= 16\sqrt{3} + 108\sqrt{3} = 124\sqrt{3}(\text{cm}^2)$$

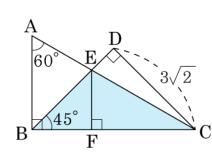
23. 다음 △ABC 에 대한 설명 중 옳은 것은?

- ① $\overline{BC} = \overline{CA}$ 이다.
- ② $2\overline{BC} = \overline{CA}$ 이다.
- ③ $\overline{\text{CH}} = \overline{\text{AH}} = 6$ 이다.
- $\overline{\text{AH}} = \overline{\text{AH}} = 6(\sqrt{3} + 1)$ 이다.
- ⑤ $\overline{AB} = 12\sqrt{3}$ 이다.

 $\overline{\mathrm{AH}} = x$ 라 하면

 $\overline{AH} : \overline{BH} = 1 : \sqrt{3} = x : x + 12, \sqrt{3}x - x = 12, x = 6(\sqrt{3} + 1)$

이다.


 ΔACH 는 직각이등변삼각형이므로 $\overline{CH}=\overline{AH}=6(\sqrt{3}+1)$ 이다.

 $\angle BAH = 60^{\circ}$ 이므로 $\overline{AB} = y$ 라 하면 $\overline{AB} : \overline{AH} = 2 : 1 = y :$

 $6(\sqrt{3}+1), y=12(\sqrt{3}+1)$ 이다.

다음 그림과 같이 두 직각삼각자가 겹쳐져 있다. ∠ABC = ∠BDC = 24. 90° ,

 $\angle DBC = 45^{\circ}, \angle BAC = 60^{\circ}$ 이고, $\overline{DC} = 3\sqrt{2} \text{cm}$ 일 때, 겹쳐진 부분인 △EBC 의 넓이는?

①
$$6(\sqrt{3}-1)\text{cm}^2$$

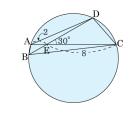
②
$$6(\sqrt{3}+1)\text{cm}^2$$

$$39(\sqrt{3}-1)\text{cm}^2$$

$$4 27(\sqrt{3}-1)\text{cm}^2$$

⑤
$$12(\sqrt{3}-1)\text{cm}^2$$

$$\triangle DBC$$
 에서 $\overline{BC} = \sqrt{(3\sqrt{2})^2 + (3\sqrt{2})^2} = 6(cm)$


$$\triangle$$
EBC 에서 $\overline{EF} = x$ 라 하면

 $\overline{\mathrm{BF}} = \overline{\mathrm{EF}} = x, \ \overline{\mathrm{FC}} = \frac{\overline{\mathrm{EF}}}{\tan 30^{\circ}} = \sqrt{3}x$

 $\overline{BC} = \overline{BF} + \overline{FC}$ 에서 $6 = x + \sqrt{3}x$ $x = \frac{6}{\sqrt{3} + 1} = 3(\sqrt{3} - 1)$

$$\triangle EBC = \frac{1}{2} \times \overline{BC} \times \overline{EF} = \frac{1}{2} \times 6 \times 3(\sqrt{3} - 1) = 9(\sqrt{3} - 1)(\text{cm}^2)$$

25. 다음 그림과 같이 원에 내접하는 사각형 ABCD 에서 $\overline{AE} = 2$, $\overline{EC} = 8$, $\angle DEC = 30^\circ$ 이다. 이 사각형의 넓이가 20 일 때, \overline{DE} 의 길이는?

① 3 ② 4 ③ 5 ④ 6 ⑤ 7

$$\Box ABCD$$
 의 넓이가 20 이므로 $\frac{1}{2} \times 10 \times \overline{BD} \times \sin 30^{\circ} = 20$

$$\frac{1}{2} \times 10 \times \overline{BD} \times \frac{1}{2} = 20$$

$$\therefore \overline{BD} = 8$$

$$\overline{\text{DE}} = x$$
 라면, $\overline{\text{BE}} = 8 - x$
 $2 \times 8 = x(8 - x)$, $16 = 8x - x^2$
 $x^2 - 8x + 16 = 0$, $(x - 4)^2 = 0$

$$\therefore x = 4$$