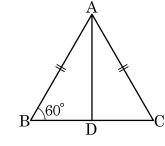
1. 다음 그림의  $\triangle ABC$ 에서,  $\overline{AB}=\overline{AC},\ B=60\,^{\circ}$ 이고, 꼭지각의 이등분 선이 밑변과 만나는 점을 D라고 할 때,  $\angle BAD$ 의 크기는?



①30° ②

② 45° ③ 60°

④ 85°

⑤ 90°

△ABC에서

 $\overline{AB} = \overline{AC}$ 이므로 이등변삼각형이고,  $\angle C = 60$ °이다.

해설

또한, ∠A = 180° - (60° + 60°) = 60°이다. 따라서 ΔABC는 정삼각형이고 ∠BAD는 ∠A 를 이등분한 각이 므로 ∠PAD - 20°이다

므로 ∠BAD = 30°이다.

- 2. 다음 중 사각형 ABCD 가 평행사변형이 되기 위한 조건을 모두 고르면? (정답 3개)
  - B
  - ①  $\overline{AB} = \overline{AD}$ ,  $\overline{BC} = \overline{CD}$
- $\bigcirc$   $\overline{AB} / / \overline{DC}, \overline{AD} / / \overline{BC}$
- $\overline{\bigcirc}$   $\overline{OA} = \overline{OC}, \overline{OB} = \overline{OD}$
- 4  $\angle A = \angle B$ ,  $\angle C = \angle D$
- $\overline{\text{AB}} = \overline{\text{DC}}, \ \overline{\text{AD}} = \overline{\text{BC}}$

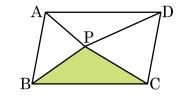
## 평행사변형이 되기 위한 조건

- (1) 두 쌍의 대변이 각각 평행하다.
- (2) 두 쌍의 대변의 길이가 각각 같다.(3) 두 쌍의 대각의 크기가 각각 같다.
- (4) 두 대각선이 서로 다른 것을 이등분한다.
- (5) 한 쌍의 대변이 평행하고 그 길이가 같다.

- 3. 다음 그림과 같은 평행사변형 ABCD 에서 변 AD , 변 BC의 중점을 각각 점 E, F 라할 때, □AFCE 는 어떤 사각형인가?
- B F C
- ③ 평행사변형 ② 마름모
- ③ 직사각형 ④ 정사각형
- ⑤ 사다리꼴

해설

 $\overline{AE} = \overline{FC}$  이고  $\overline{AE} / / \overline{FC}$  이므로 사각형 AFCE 는 평행사변형이다. 4. 다음 그림과 같이 평행사변형 ABCD의 넓이가  $100 \mathrm{cm}^2$ 이고,  $\Delta PAD$ 의 넓이가  $24 \mathrm{cm}^2$ 일 때, 어두운 부분의 넓이는 얼마인가?

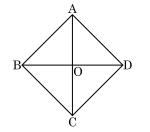


- ①  $24 \text{cm}^2$
- $25 \text{cm}^2$
- $326 \text{cm}^2$
- $4 28 \text{cm}^2$
- $\bigcirc 50 \text{cm}^2$

내부의 한 점 P에 대하여  $\frac{1}{2}$  $\square$ ABCD =  $\triangle$ PAB +  $\triangle$ PCD =  $\triangle$ PAD +  $\triangle$ PBC 이다.  $100 \times \frac{1}{2} = 24 + \triangle$ PBC 이므로  $\triangle$ PBC =  $26(\text{cm}^2)$ 이다.

2

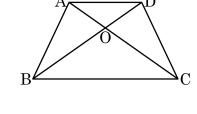
- **5.** 다음은 마름모 ABCD 이다. AO = BO 이고, ∠A = 90°일 때, □ABCD 는 어떤 사각형이 되는가?
  - ① 사다리꼴 ② 기기가형
- ② 등변사다리꼴
- ③ 직사각형
- ④ 정사각형
- ⑤ 평행사변형



해설 마름모에서 두 대각선의 길이가 같고, 내각의 크기가 90°이면

정사각형이 된다.

다음 그림과 같이  $\overline{\mathrm{AD}}//\overline{\mathrm{BC}}$  인 사다리꼴  $\mathrm{ABCD}$ 에서  $\overline{\mathrm{OA}}:\overline{\mathrm{OC}}=1:2$ **6.** 이다. △AOD 의 넓이가 18 일 때, □ABCD 의 넓이는?



4 175

**⑤** 180

<u>③</u>162

 $\triangle AOD : \triangle COD = 1 : 2$  이므로

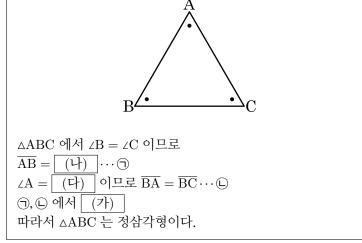
해설

① 148 ② 150

 $18: \triangle COD = 1:2 \quad \therefore \triangle COD = 36$ 이때  $\triangle ABD = \triangle ACD$  이므로  $\triangle ABO = \triangle COD = 36$ 또,  $\triangle ABO : \triangle COB = 1 : 2$  이므로  $36: \triangle COB = 1:2$   $\therefore \triangle COB = 72$ 

 $\therefore \Box ABCD = 18 + 36 + 36 + 72 = 162$ 

7. 다음은 「세 내각의 크기가 같은 삼각형은 정삼각형이다.」를 보이는 과정이다.



(개 ~ (대에 들어갈 것을 차례로 쓴 것은?

①  $\overline{AB} = \overline{BC} = \overline{CA}$ ,  $\overline{AC}$ ,  $\angle B$ 

 $\bigcirc$   $\overline{AB} = \overline{BC} = \overline{CA}$  ,  $\overline{AC}$  ,  $\angle C$ 

③  $\angle A = \angle B = \angle C$ ,  $\overline{BC}$ ,  $\angle A$ ④  $\angle A = \angle B = \angle C$ ,  $\overline{BC}$ ,  $\angle C$ 

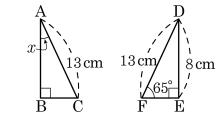
 $\bigcirc$   $\angle A = \angle B = \angle C$ ,  $\overline{AC}$ ,  $\angle C$ 

△ABC 에서 ∠B = ∠C 이므로

 $\overline{AB} = (\overline{AC}) \cdots \bigcirc$   $\angle A = (\angle C) \circ \Box = \overline{BA} = \overline{BC} \cdots \bigcirc$   $\bigcirc, \bigcirc \text{에서} (\overline{AB} = \overline{BC} = \overline{CA})$ 

따라서 ΔABC 는 정삼각형이다.

합동인 두 직각삼각형 ABC, DEF가 다음 그림과 같을 때,  $\angle x$ 의 크 8. 기는?



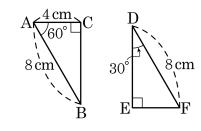
- ① 65° ② 55° ③ 45°
- 4 35°

 $\triangle$ ABC,  $\triangle$ DEF는 서로 합동이다.

해설

 $\therefore \angle x = \angle \text{FDE} = 180^{\circ} - 90^{\circ} - 65^{\circ} = 25^{\circ}$ 

두 직각삼각형 ABC, DEF 가 다음 그림과 같을 때, ĒF 의 길이는? 9.



- ① 5cm ④ 3.5cm
- ② 4.5cm ⑤ 3cm
- (3)4cm

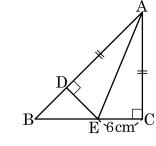


△ABC, △FDE 는 RHA 합동

해설

 $\therefore \overline{\mathrm{EF}} = \overline{\mathrm{CA}} = 4\mathrm{cm}$ 

 ${f 10}$ . 다음 직각삼각형  ${
m ABC}$  에서  ${
m \overline{AC}}={
m \overline{AD}}$  인 점 D 를 잡고  ${
m \overline{AB}} \bot {
m \overline{DE}}$  인 점 E를 잡았다.  $\overline{\mathrm{EC}}=6\mathrm{cm}$  일 때,  $\overline{\mathrm{DE}}$  의 길이를 구하여라.



 $\underline{\mathrm{cm}}$ 

▷ 정답: 6cm

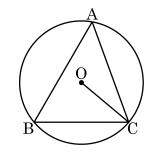
해설

▶ 답:

그러므로  $\overline{\mathrm{DE}} = \overline{\mathrm{EC}} = 6(\mathrm{cm})$ 

 $\triangle$ ACE  $\equiv \triangle$ ADE(RHS합동) 이다.

11. 다음 그림에서 점 O는  $\triangle$ ABC의 외심이고,  $\angle$ OCB =  $40^{\circ}$ 일 때,  $\angle$ BAC 의 크기를 구하면?

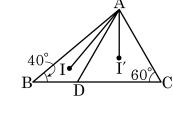


①50° 2 55° 3 60° 4 65° 5 70°

해설 ΔOBC는 이등변삼각형이므로

 $\angle OBC = \angle OCB = 40^{\circ}$ ,  $\angle BOC = 100^{\circ}$  $\triangle ABC$ 에서  $\angle BAC = \frac{1}{2} \angle BOC = 50$ °

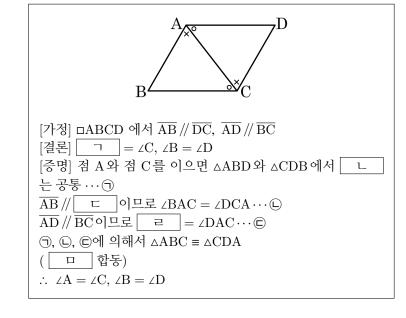
**12.** 다음 그림에서 점 I, I' 는 각각  $\triangle$ ABD,  $\triangle$ ADC 의 내심이다.  $\angle$ B = 40°,  $\angle$ C = 60° 일 때,  $\angle$ IAI' 의 크기는?



- ① 20° ② 30°
- ③ 40°
- ④ 50°
- ⑤ 60°

$$\angle IAI' = \frac{1}{2} \angle A = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$$

13. 다음은 '평행사변형에서 두 쌍의 대각의 크기가 각각 같다.' 를 증명한 것이다. ㄱ ~ ㅁ에 들어갈 것으로 옳지 <u>않은</u> 것은?



④ = : ∠BCA ⑤ □ : SAS

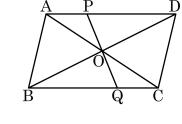
 $\Delta ABC$ 와  $\Delta CDA$  에서  $\overline{AC}$ 는 공통

해설

①  $\neg: \angle A$  ②  $\iota: \overline{AC}$  ③  $\iota: \overline{DC}$ 

AB // CD 이므로 ∠BAC = ∠DCA,
AD // BC 이므로
∠ACB = ∠DAC 이므로 ΔABC ≡ ΔCDA (ASA 합동)이다.

**14.** 다음 그림과 같이 평행사변형 ABCD의 두 대각선의 교점 O를 지나는 직선이 변 AD, BC와 만나는 점을 각각 P, Q라 할 때, 다음 중 옳지 <u>않은</u> 것은?

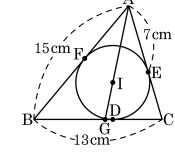


 $\overline{\text{OP}} = \overline{\text{OQ}}$ 

- $\bigcirc$   $\triangle$ AOP  $\equiv$   $\triangle$ COQ

 $\overline{\mathrm{AO}} = \overline{\mathrm{OC}}$ ,  $\angle \mathrm{AOP} = \angle \mathrm{COQ}$ ,  $\angle \mathrm{OAP} = \angle \mathrm{OCQ}$ 이므로  $\triangle \mathrm{AOP} \equiv$ 

 $\triangle COQ$ 이다. 또한, 평행사변형의 두 대각선은 서로를 이등분하므로  $\overline{OB} \neq \overline{OC}$ 이다. 15. 다음 그림에서 점 I 는  $\triangle ABC$  의 내심이다.  $\overline{AB}=15 \mathrm{cm}, \ \overline{AE}=$ 7cm,  $\overline{\mathrm{BC}}=13\mathrm{cm}$  일 때,  $\overline{\mathrm{GD}}$  의 길이를 구하여라.



 $\underline{\mathrm{cm}}$ 

ightharpoonup 정답:  $\frac{7}{9}$   $\underline{\mathrm{cm}}$ 

▶ 답:

원 밖의 한 점에서 원에 그은 두 접선의 길이는 같다.  $\overline{\overline{AE}} = \overline{\overline{AF}} = 7 \mathrm{cm}$  이므로  $\overline{\overline{BF}} = 15 - 7 = 8 \mathrm{cm}$ 

 $\overline{\mathrm{BF}} = \overline{\mathrm{BD}} = 8\mathrm{cm}$  이므로  $\overline{\mathrm{DC}} = 13 - 8 = 5\mathrm{cm}$  $\overline{\mathrm{CE}} = \overline{\mathrm{CD}} = 5\mathrm{cm}$ 

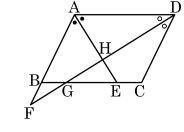
 $\therefore \ \overline{\rm AC} = 12 \rm cm$ 또한,  $\overline{\mathrm{GD}} = x\mathrm{cm}$  라 하면  $\overline{\mathrm{BD}} = 8\mathrm{cm}$ ,  $\overline{\mathrm{DC}} = 5\mathrm{cm}$  이므로

 $\overline{\mathrm{BG}} = 8 - x(\mathrm{cm}), \ \overline{\mathrm{GC}} = x + 5(\mathrm{cm})$  $\overline{\mathrm{AB}}:\overline{\mathrm{AC}}=\overline{\mathrm{BG}}:\overline{\mathrm{GC}}$ 

15:12=(8-x):(x+5) $\therefore \ x = \frac{7}{9}$ 

따라서  $\overline{\mathrm{GD}} = \frac{7}{9}\mathrm{cm}$  이다.

**16.** 다음 그림에서  $\overline{AE}$ ,  $\overline{DF}$  는 각각  $\angle A$ ,  $\angle D$  의 이등분선이다.  $\angle ABC=64^\circ$  일 때,  $\angle AEC+\angle DCE$  의 크기를 구하여라.



 답:
 2

 ▷ 정답:
 238 °

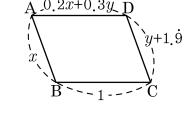
$$∠A = 180^{\circ} - ∠B = 180^{\circ} - 64^{\circ} = 116^{\circ}$$
 $∠AEC = 180^{\circ} - \frac{1}{2}∠A$ 

$$= 180^{\circ} - \frac{1}{2} \times 116^{\circ}$$

$$= 180^{\circ} - 58^{\circ} = 122^{\circ}$$
 $∠C = ∠A = 116^{\circ}$ 

$$∴ ∠AEC + ∠DCE = 122^{\circ} + 116^{\circ} = 238^{\circ}$$

**17.** 다음 그림과 같은 사각형 ABCD 가 평행사변형이 되도록 하는 x, y 의 합 x + y 의 값을 구하여라.

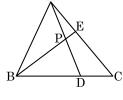


▷ 정답: 4

▶ 답:

 $x=y+1.\dot{9},\ 0.\dot{2}x+0.\dot{3}y=1$  이므로 이를 풀면 x=3,y=1 : x+y=4

18. 다음 그림에서  $\overline{BD}:\overline{CD}=2:1$ ,  $\overline{AE}:\overline{CE}=2:3$ ,  $\overline{AP}:\overline{DP}=1:1$ 이다.  $\triangle ABC=30\,\mathrm{cm}^2$ 일 때,  $\triangle APE$ 의 넓이를 구하여라.



 답:
 cm²

 > 정답:
 2 cm²

## $\triangle APE = \triangle ABE - \triangle APB$ 이다.

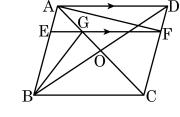
해설

 $\triangle ABE = 30 \times \frac{2}{5} = 12$ 

$$\triangle ABD = 30 \times \frac{2}{3} = 20$$
,  $\triangle APB = \triangle ABD \times \frac{1}{2} = 10$ 

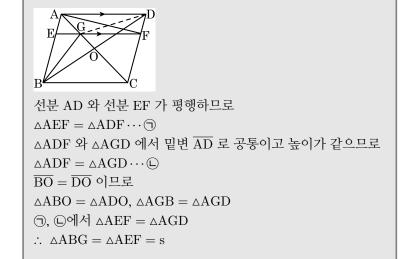
따라서 
$$\triangle APE = \triangle ABE - \triangle APB = 12 - 10 = 2(\text{ cm}^2)$$

**19.** 다음 평행사변형 ABCD 에서 변 AD 와 평행한 직선이 변 AB, CD 와 만나는 점을 각각 E, F 라 한다.  $\triangle$ AEF 의 넓이가 s 일 때,  $\triangle$ ABG 의 넓이를 s 를 사용한 식으로 나타내어라.

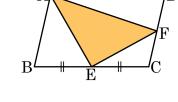


▷ 정답: s

답:



20. 다음의 평행사변형 ABCD에서 점 E, F는 각각  $\overline{BC}$ ,  $\overline{DC}$ 의 중점이다.  $\Box ABCD = 40~\mathrm{cm}^2$ 일 때,  $\triangle AEF$ 의 넓이를 구하여라.



답: <u>cm²</u>
 > 정답: 15<u>cm²</u>

 $\triangle ABE = \frac{1}{4} \square ABCD = \frac{1}{4} \times 40 = 10 \text{ (cm}^2\text{)}$   $\triangle AFD = \frac{1}{4} \square ABCD = 10 \text{ (cm}^2\text{)}$   $\triangle FEC = \frac{1}{8} \square ABCD = \frac{1}{8} \times 40 = 5 \text{ (cm}^2\text{)}$   $\therefore \triangle AEF$   $= \square ABCD - (\triangle ABE + \triangle AFD + \triangle FEC)$   $= 40 - (10 + 10 + 5) = 15 \text{ (cm}^2\text{)}$