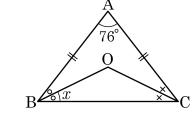
1. $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC 에서 $\angle BAC = 76^{\circ}$ 일 때, $\angle x$ 의 크기는?



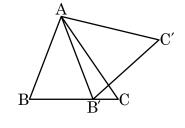
① 20° ② 22° ③ 24°

⑤ 28°

해설 $\triangle ABC$ 가 이등변삼각형이므로 $\angle ABC = \angle ACB$

그런데 $\angle ABC$ 와 $\angle ACB$ 를 이등분한 선이 만나는 점이 O 이므로 $\angle ABO = \angle OBC = \angle OCB = \angle ACO$ 따라서 $4 \times \angle x = 180^{\circ} - 76^{\circ} = 104^{\circ}$ $\therefore \angle x = 26^{\circ}$

2. 다음 그림에서 $\triangle AB'C'$ 은 $\triangle ABC$ 를 회전이동한 것이다. 이때, $\triangle ABB'$ 은 어떤 삼각형인가?

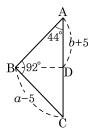


- ③ 직각삼각형
- ②이등변삼각형 ④ 직각이등변삼각형
- ⑤ 알수없다.

\overline{AB} 가 $\overline{AB'}$ 로 옮겨 간 것이므로 $\overline{AB} = \overline{AB'}$ 이므로 이등변삼각

형이다.

3. 다음 그림과 같은 $\triangle ABC$ 에서 \overline{BD} 는 $\angle ABC$ 를 이등분할 때, $\overline{AB}+\overline{CD}$ 를 a 와 b 에 관한 식으로 나타내어라.



답:▷ 정답: a+b

△ABC 에서

해설

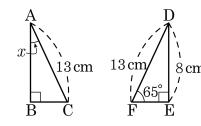
 $\angle BCA = 180\degree - (92\degree + 44\degree) = 44\degree$ 따라서 $\triangle ABC$ 는 이등변삼각형이므로 $\overline{AB} = \overline{BC}$

또 \overline{BD} 는 $\angle ABC$ 를 이등분하므로 \overline{BD} 는 \overline{AC} 의 수직이등분선

이다. 따라서 $\overline{\mathrm{AD}} = \overline{\mathrm{CD}}$ 이다.

 $\therefore \overline{AB} + \overline{CD} = (a-5) + (b+5) = a+b$

합동인 두 직각삼각형 ABC, DEF가 다음 그림과 같을 때, $\angle x$ 의 크 4. 기는?



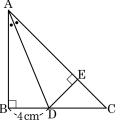
- ① 65° ② 55° ③ 45°
- 4 35°

 \triangle ABC, \triangle DEF는 서로 합동이다.

해설

 $\therefore \angle x = \angle \text{FDE} = 180^{\circ} - 90^{\circ} - 65^{\circ} = 25^{\circ}$

5. 직각이등변삼각형 ABC 에서 $\angle A$ 의 이등분 선과 \overline{BC} 의 교점을 D , D 에서 \overline{AC} 에 내린 수선의 발을 E 라고 하자. $\overline{BD}=4cm$ 일 때, △EDC 의 넓이를 구하여라.



정답: 8 cm²

▶ 답:

∠C = 45 ° 이므로 △EDC 는 직각이등변삼각형이다.

△ABD 와 △AED 에서

 $\overline{\mathrm{AD}}$ 는 공통 \cdots \bigcirc

 $\angle ABD = \angle AED = 90^{\circ} \cdots \bigcirc$ $\angle BAD = \angle EAD \cdots \bigcirc$

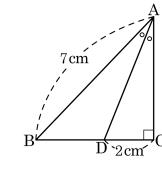
 \bigcirc , \bigcirc , \bigcirc 에 의해 $\triangle ABD \equiv \triangle AED (RHA 합동)이다.$

따라서 $\overline{\mathrm{ED}} = \overline{\mathrm{BD}} = 4$ 이므로 $\Delta \mathrm{EDC}$ 의 넓이는 $\frac{1}{2} \times 4 \times 4 =$

8(cm²) 이다.

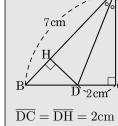
 $\underline{\mathrm{cm}^2}$

6. 다음 그림에서 $\angle C=90^\circ$ 인 직각삼각형 ABC 에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D 라 하고, $\overline{AB}=7\mathrm{cm},\ \overline{DC}=2\mathrm{cm}$ 일 때, $\triangle ABD$ 의 넓이는?



① 5cm^2 ② 6cm^2 ③ 7cm^2 ④ 8cm^2 ⑤ 9cm^2

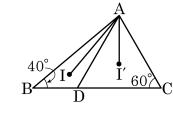
점 D 에서 ĀB 에 내린 수선과의 교점을 H 라 하면, △AHD ≡ △ACD(RHA합동)



 $\therefore \triangle ABD = \frac{1}{2} \times 7 \times 2 = 7(\text{ cm}^2)$

2

7. 다음 그림에서 점 I, I' 는 각각 \triangle ABD, \triangle ADC 의 내심이다. \angle B = 40°, \angle C = 60° 일 때, \angle IAI' 의 크기는?



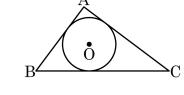
④ 50°

⑤ 60°

① 20° ② 30° ③ 40°

 $\angle IAI' = \frac{1}{2} \angle A = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$

다음 그림과 같이 ΔABC 에서 점 O 는 내심이다. 내접원의 반지름이 8. $3\,\mathrm{cm}$ 이고, $\Delta\mathrm{ABC}$ 의 넓이가 $36\,\mathrm{cm}^2$ 일 때, $\Delta\mathrm{ABC}$ 의 둘레의 길이를 구하여라



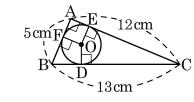
 \bigcirc 24 cm $\bigcirc 9 \, \mathrm{cm}$ ② $12 \,\mathrm{cm}$ ③ $18 \,\mathrm{cm}$ ④ $21 \,\mathrm{cm}$

삼각형 세변의 길이를 각각 a, b, c 라 하면

 $\triangle ABC = \triangle OBC + \triangle OAC + \triangle OAB$ $= \frac{1}{2} \times 3 \times a + \frac{1}{2} \times 3 \times b + \frac{1}{2} \times 3 \times c$ $= \frac{1}{2} \times 3 \times (a + b + c) = 36$

따라서 △ABC 의 둘레의 길이는 24 cm

 $\Delta {
m ABC}$ 에서 점 ${
m O}$ 는 내접원의 중심이고 각 변의 길이가 다음과 같이 9. 주어져있다. 이때, 내접원의 반지름의 길이는?



- $\bigcirc 0.5\,\mathrm{cm}$
- ② 1 cm
- $32 \, \mathrm{cm}$
- $42.5\,\mathrm{cm}$
- \odot 3 cm

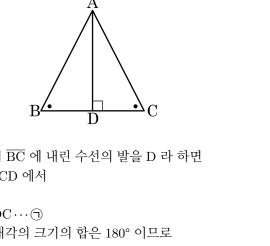
 $\triangle ABC$ 에서 내접원의 반지름을 r ,각 변의 길이를 $a,\ b,\ c$ 라하면 $\triangle ABC$ 의 넓이는 $\triangle ABC = \frac{1}{2}r(a+b+c)$

$$\frac{2}{\text{이때}} \land ABC = \frac{1}{2} \times 5$$

이때,
$$\triangle ABC = \frac{1}{2} \times 5 \times 12 = 30$$
 이므로 $\frac{1}{2} r(a+b+c) = 30$,
$$\frac{1}{2} r(5+12+13) = 30$$

따라서
$$r = 2 \,\mathrm{cm}$$

10. 다음은 이등변삼각형의 어떤 성질을 보인 것인가?



② 세 내각의 크기가 같은 삼각형은 이등변삼각형이다.

① 두 밑각의 크기가 같은 삼각형은 이등변삼각형이다.

- ③ 두 변의 길이가 같은 삼각형은 이등변삼각형이다.
- ④ 이등변삼각형의 꼭지각의 이등분선은 밑변의 중점을 잇는다.
- ⑤ 이등변삼각형의 꼭지각의 이등분선은 밑변과 수직으로 만난다.

① 두 밑각의 크기가 같은 삼각형은 이등변삼각형이다.

- 11. 다음 그림과 같이 $\angle C = 90$ °인 $\triangle ABC$ 에 서 $\angle A$ 의 이등분선과 \overline{AB} 의 수직이등분선이 $\overline{\mathrm{BC}}$ 위의 점 D에서 만날 때, $\angle\mathrm{MAD}$ 의 크기 는? ③30° ① 10° ② 20°
- ④ 40° ⑤ 50°

해설

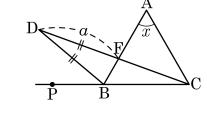
 $\triangle ACD \equiv \triangle AMD$ (RHA합동),

 $\triangle AMD \equiv \triangle BMD (SAS합동) 이므로$ $\angle ADC = \angle ADM = \angle BDM$

한편 $\angle ADC + \angle ADM + \angle BDM = 180$ °이므로 $\angle ADC = \angle ADM = \angle BDM = 60^{\circ}$

따라서 ∠MAD = 30°이다.

12. 다음 그림에서 $\triangle BDF$ 는 $\overline{DB}=\overline{DF}$ 인 이등변삼각형이다. 주어진 [조건]에 따랐을 때, $\triangle ABC$ 의 둘레의 길이를 a 로 나타내어라.



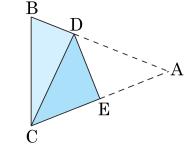
▷ 정답: 3a

해설

답:

 $\angle PBD = \angle y$ 라고 하면 $D = \frac{A}{x}$ $D = \frac{A$

13. 다음 그림은 $\angle B = \angle C$ 인 삼각형 ABC 를 점 A 가 점 C 에 오도록 접은 것이다. $\angle DCB = 25^\circ$ 일 때, $\angle A$ 의 크기를 구하여라.



ightharpoonup 정답: $\frac{130}{3}$ $\stackrel{\circ}{-}$

답:

 $\angle A = \angle x$ 라 하면

해설

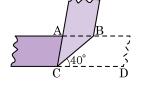
 $\angle \text{DCE} = \angle A = \angle x$

 $\angle B = \angle C = \angle x + 25^{\circ}$ ΔABC 에서 세 내각의 크기의 합은 180° 이므로

 $\angle x + 2(\angle x + 25^\circ) = 180^\circ$

 $3\angle x = 130^{\circ}, \ \angle x = \frac{130^{\circ}}{3}$ $\therefore \ \angle A = \frac{130^{\circ}}{3}$

14. 직사각형 모양의 종이를 다음 그림과 같이 접었을 때, ∠BCD = 40°이다. 이때, ∠BAC 의 크기를 구하여라.



➢ 정답: 100°

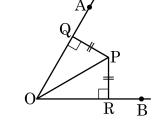
답:

 $\angle BCD = \angle BCA = 40^{\circ}$

해설

 $\angle BCD = \angle ABC = 40^{\circ}$ (엇각) $\angle BAC = 180^{\circ} - 80^{\circ} = 100^{\circ}$

15. 다음 그림과 같이 $\angle AOB$ 의 내부의 한 점 P 에서 각 변에 수선을 그어 그 교점을 Q, R 이라 하자. $\overline{PQ} = \overline{PR}$ 이라면, \overline{OP} 는 $\angle AOB$ 의 이등분선임을 증명하는 과정에서 $\triangle \mathrm{QOP} \equiv \triangle \mathrm{ROP}$ 임을 보이게 된다. 이 때 사용되는 삼각형의 합동 조건은?

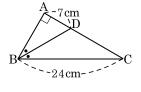


- ① 두 변과 그 사이 끼인각이 같다. ② 한 변과 그 양끝각이 같다.
- ③ 세 변의 길이가 같다.
- ④ 직각삼각형의 빗변과 한 변의 길이가 각각 같다.
- ⑤ 직각삼각형의 빗변과 한 예각의 크기가 각각 같다.

$\overline{\mathrm{OP}}$ 는 공통이고 $\overline{\mathrm{PQ}}$ = $\overline{\mathrm{PR}}$ 이므로, 빗변과 다른 한 변의 길이가

같은 RHS 합동이다.

16. 다음 그림과 같이 ∠A = 90° 인 △ABC에서 BD 는 ∠B 의 이등분선이고 BC = 24 cm, AD = 7 cm 일 때, △DBC의 넓이를 구하여라.



정답: 84 cm²

답:

(△DBC의 넓이) = $24 \times 7 \times \frac{1}{2}$ = 84 (cm²) B $\frac{1}{24 \text{ cm}^{-7}\text{ cm}}$ C

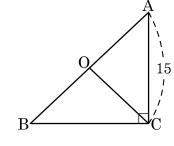
 $\underline{\mathrm{cm}^2}$

17. 어떤 직각삼각형 ABC의 외접원의 원의 넓이가 $36\pi~{
m cm}^2$ 이라고 할때, 이 직각삼각형의 빗변의 길이는?

① 4cm ② 6 cm ③ 9cm ④ 12cm ⑤ 18cm

해설 직각삼각형의 외심은 빗변의 중심에 위치하므로

ΔABC의 외접원의 중심은 빗변의 중점이다. 외접원의 넓이가 36πcm² 이므로 반지름의 길이는 6cm이다. 따라서 이 삼각형의 빗변의 길이는 외접원의 지름의 길이와 같 으므로 12cm이다. 18. 다음 그림에서 점 $O \leftarrow \angle C = 90$ °인 직각삼각형의 외심이다. $\triangle AOC$ 의 넓이가 60일 때, $\overline{\mathrm{BC}}$ 의 길이를 구하여라.



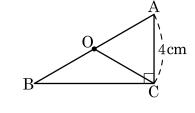
답: ➢ 정답: 16

변 $\overline{\mathrm{OC}}$ 는 $\Delta\mathrm{ABC}$ 의 넓이를 이등분하므로

 \triangle ABC의 넓이는 $60 \times 2 = 120$ 이다. 높이가 15이고, 삼각형의 넓이가 120이므로 $\frac{1}{2} \times \overline{\mathrm{BC}} \times 15 = 120$

 $\therefore x = 16$

19. 다음 그림과 같이 직각삼각형 ABC의 외심이 점 O일 때, $\overline{\mathrm{AB}}+\overline{\mathrm{AC}}=$ 12cm 이면 ∠ABC 의 크기는?



- ① 10° ④ 40°
- ② 20°
- 30°
- ⑤ 알수 없다.

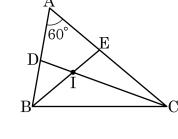
$\overline{\mathrm{OA}} + \overline{\mathrm{OB}} + \overline{\mathrm{AC}} = 12\mathrm{cm}$ 이고

해설

 $\overline{\mathrm{OA}} = \overline{\mathrm{OB}} = \overline{\mathrm{OC}}$ 이므로 $\overline{\mathrm{OA}} = \overline{\mathrm{OC}} = \overline{\mathrm{AC}} = 4\mathrm{cm}$ 이다. 따라서 $\triangle AOC$ 는 정삼각형이므로 $\angle OAC=60\,^\circ$

∴ $\angle ABC = 30^{\circ}$

 ${f 20}$. 다음 그림에서 점 I 는 $\Delta {
m ABC}$ 의 내심이다. $\angle {
m A} = 60^{\circ}$ 일 때, $\angle {
m BDC} +$ ∠BEC 의 크기를 구하여라.

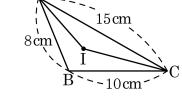


▶ 답: ▷ 정답: 180_°

 $\label{eq:bic} \angle \text{BIC} = 90^\circ + \frac{1}{2} \angle \text{BAC} = 120^\circ \text{ , } \angle \text{DIE} = 120^\circ \text{ .}$ $\square ADIE$ 에서 $\angle ADI + \angle AEI + 60^{\circ} + 120^{\circ} = 360^{\circ}$

 $\angle ADI + \angle AEI = 180^{\circ}$. $\angle BDI + \angle ADI + \angle CEI + \angle AEI = 360^{\circ}$, $\angle BDC + \angle BEC = 180^{\circ}$

21. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이고 $\overline{AB}=8cm,\ \overline{BC}=10cm,\ \overline{AC}=15cm$ 일 때, $\triangle ABC$ 의 넓이와 $\triangle AIC$ 의 넓이의 비는?



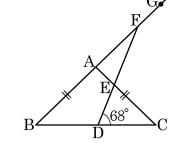
- ① 2:1
- ② 30:17 ⑤ 36:17
- 32:15
- 33 : 15

내접원의 반지름의 길이를 rcm 라 하면

($\triangle ABC$ 의 넓이) = $\frac{1}{2} \times r \times (8 + 10 + 15) = \frac{33}{2} r \text{ (cm}^2)$

 $(\triangle AIC의 넓이) = \frac{1}{2} \times r \times 15 = \frac{15}{2} r \text{ (cm}^2)$ 따라서 $\triangle ABC : \triangle AIC = \frac{33}{2} r : \frac{15}{2} r = 33 : 15 이다.$

22. 다음 그림에서 $\overline{AB} = \overline{AC}$ 이고 $\overline{CD} = \overline{CE}$ 이다. $\angle EDC = 68^\circ$ 일 때, $\angle B$ 의 크기를 구하여라.



③ 48°

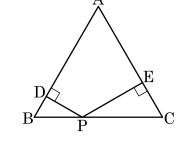
④ 52° ⑤ 56°

 $\angle B = \angle C = 44^{\circ}$

 $\angle C = 180^{\circ} - 68^{\circ} \times 2 = 44^{\circ}$

① 40°

23. 다음 그림과 같이 $\overline{AB} = 10 \text{cm}$, $\angle B = \angle C$ 인 삼각형 ABC 의 변 BC 위의 한 점 P 에서 나머지 두 변에 내린 수선의 발을 각각 D, E 라고 한다. $\overline{PE} + \overline{PD} = 8 \text{cm}$ 일 때, 삼각형 ABC 의 넓이를 구하여라.



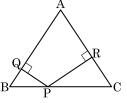
 $\underline{\rm cm^2}$

정답: 40 cm²

▶ 답:



 ${f 24}$. 다음 그림과 같이 ${f \overline{AB}}={f \overline{AC}}$ 인 ${\it \Delta ABC}$ 에 서 밑변 BC 위의 한 점 P 에서 \overline{AB} , \overline{AC} 에 내린 수선의 발을 각각 Q, R 이라 한다. $\overline{PQ}=3\mathrm{cm}$, $\overline{PR}=5\mathrm{cm}$ 일 때, 점 B 에서 $\overline{\mathrm{AC}}$ 에 이르는 거리는?



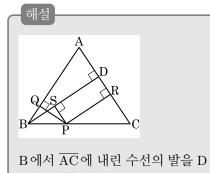
 \bigcirc 5cm

 \bigcirc 7cm

③8cm

④ 10cm

⑤ 12cm



P에서 \overline{BD} 에 내린 수선의 발을 S라 하면

 $\overline{\mathrm{BP}}$ 는 공통이다. \cdots \bigcirc

 $\angle \mathrm{BPS} = \angle \mathrm{C}$

⊙,ⓒ,ⓒ에 의하여

 $\triangle \mathrm{QBP} \equiv \triangle \mathrm{SPB} \; (\mathrm{RHA} \; \text{합동})$

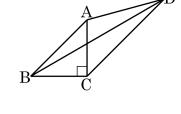
 $\therefore \overline{\mathrm{QP}} = \overline{\mathrm{SB}} \cdots \bigcirc$

또, □SPRD 는 직사각형이므로 $\overline{\mathrm{PR}} = \overline{\mathrm{SD}} \ \cdots \ \textcircled{\tiny{\square}}$

(②, ① 에서 $\overline{\mathrm{QP}} + \overline{\mathrm{PR}} = \overline{\mathrm{BS}} + \overline{\mathrm{SD}} = \overline{\mathrm{BD}}$

 $\therefore \overline{BD} = 3 + 5 = 8(cm)$

25. 다음 그림과 같이 $\angle C = 90^\circ$ 인 직각이등변삼각형 ABC 의 외부에 $\angle DBC = 30^\circ$, $\angle BCD = 135^\circ$ 인 점 D 를 잡았다. 이때 $\angle CAD$ 의 크기를 구하여라.



 ▷ 정답:
 105 °

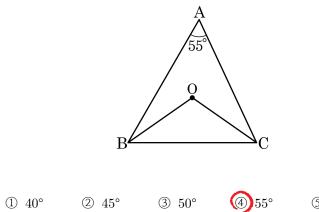
답:

점 C 를 지나고 \overline{BD} 에 평행한 직선과 직선 \overline{BD} 를 \overline{CD} 에 대하여 대칭이동한 직선이 만나는 점을 E 라 하자. $\triangle DBC$ 에서 $\angle BDC = 180^{\circ} - (30^{\circ} + 135^{\circ}) = 15^{\circ}$, $\angle \text{CDE} = \angle \text{BDC} = 15^{\circ}$ 이므로 $\angle CBD = \angle EDB = 30^{\circ}$ 점 C 와 E 에서 \overline{BD} 에 내린 수선의 발을 각각 $P,\ Q$ 라 하면 \triangle BCP 와 \triangle DEQ 에서 \angle CPB = \angle EQD = 90°, $\angle BCP = \angle DEQ = 60^{\circ}$ 이코 $\overline{\mathrm{CP}} = \overline{\mathrm{EQ}}$ (: 평행선 사이의 거리)이므로 $\triangle BCP \equiv \triangle DEQ \text{ (ASA 합동)}$ $\therefore \overline{BC} = \overline{DE}$ $\overline{\mathrm{BD}}\,/\!/\,\overline{\mathrm{CE}}$ 이므로 $\angle\mathrm{DCE}=\angle\mathrm{BDC}=15^\circ$ (엇각) $\therefore \ \angle DCE = \angle CDE$ 즉, ΔECD 는 이등변삼각형이다. $\overline{\text{CE}} = \overline{\text{DE}} = \overline{\text{BC}}$ 이고, $\overline{\text{AC}} = \overline{\text{BC}}$ 이므로 $\overline{\text{AC}} = \overline{\text{CE}}$ 이때, $\angle ACE = \angle ACD + \angle DCE = 45^{\circ} + 15^{\circ} = 60^{\circ}$ 이므로 △ACE 는 정삼각형이다. 한편, $\overline{AE} = \overline{CE} = \overline{ED}$ 이고, $\triangle ECD$ 에서 $\angle AED = 180^{\circ} - (\angle AEC + \angle DCE + \angle CDE)$

이므로 △AED 는 직각이등변삼각형이다. ∴ ∠EAD = 45° ∴ ∠CAD = ∠CAE + ∠EAD = 60° + 45° = 105°

 $= 180 \degree - (60 \degree + 15 \degree + 15 \degree) = 90 \degree$

26. 다음 그림에서 점 O 는 \triangle ABC 의 외심이다. \angle ABO + \angle ACO 의 크기는?



Ø 40

(3) 50°

(4) 5

⑤ 60°

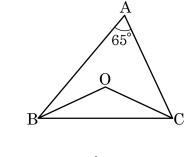
보조선 OA 를 그으면

 $\angle OAB = \angle OBA$

∠OAC = ∠OCA 이므로

 $\angle ABO + \angle ACO = \angle OAB + \angle OAC = \angle BAC = 55^{\circ}$ 이다.

27. 다음 그림에서 점 O 는 \triangle ABC 의 외심이다. \angle A = 65° 일 때, \angle OBC + \angle OCB 의 크기를 구하여라.



▷ 정답: 50°

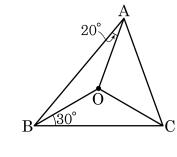
▶ 답:

해설

 $\angle OAB = \angle OBA, \angle OAC = \angle OCA$ 이므로 $\angle OBA + \angle A + \angle OCA = 2 \times 65^\circ = 130^\circ$

 $\therefore \angle OBC + \angle OCB = 180^{\circ} - 130^{\circ} = 50^{\circ}$

28. 다음 그림의 \triangle ABC에서 점 O는 외심이다. \angle BAO = 20 $^{\circ}$, \angle OBC = 30°일 때, ∠AOC의 크기를 구하면?



① 60° ② 80°

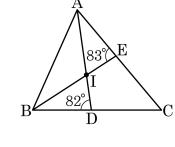
③100°

4 120° 5 140°

외심의 성질에 의하여 $\angle BAO = \angle ABO = 20^{\circ}$

 $\angle AOC = 2 \times \angle ABC$ $\therefore \angle AOC = 50^{\circ} \times 2 = 100^{\circ}$

29. 다음 그림에서 점I 는 \triangle ABC 의 내심이다. \angle AEB = 83°, \angle ADB = 82° 일 때, \angle C 의 크기를 구하여라.

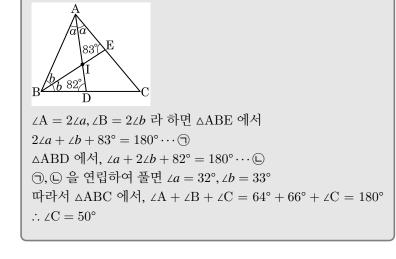


▷ 정답: 50°

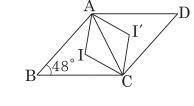
_

▶ 답:

해설



30. 평행사변형 ABCD 에서 점 I, I' 은 각각 \triangle ABC , \triangle ACD 의 내심이다. \angle B = 48° 일 때, \angle AIC 와 \angle IAI' 의 크기의 차를 구하여라.



답:

➢ 정답: 48 º

 $\angle AIC = 90^{\circ} + \frac{1}{2} \angle B = 90^{\circ} + \frac{1}{2} \times 48^{\circ} = 114^{\circ}$ $\angle IAI' = \frac{1}{2} \angle BAD = \frac{1}{2} \times (180^{\circ} - 48^{\circ}) = 66^{\circ}$ $\therefore \angle AIC - \angle IAI' = 114^{\circ} - 66^{\circ} = 48^{\circ}$

 $oldsymbol{31}$. 다음 그림에서 점 I 는 직각삼각형 ABC 의 내심이고, 점 D,E,F 는 접점이다. $\overline{AC}=15\mathrm{cm},\ \overline{AB}+\overline{BC}=21\mathrm{cm}$ 일 때, $\triangle ABC$ 의 내접원의 반지름의 길이를 구하여라.

> F 15cm D

> > $\underline{\mathrm{cm}}$

▷ 정답: 3<u>cm</u>

▶ 답:

 $\overline{\mathrm{AF}}=\overline{\mathrm{AD}}=x(\mathrm{cm})$ 라 하면, $\overline{\mathrm{CF}}=\overline{\mathrm{CE}}=15-x(\mathrm{cm})$

또, 내접원의 반지름의 길이를 rcm 라 하면 \Box DBEI가 정사각 형이므로

 $\overline{\mathrm{DB}} = \overline{\mathrm{BE}} = r(\mathrm{cm})$ 따라서 $\overline{AB} + \overline{BC} = 21(cm)$ 이므로

 $x + r + r + 15 - x = 21, \ 2r = 6$

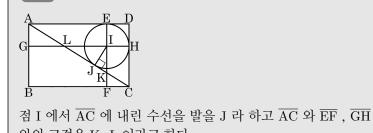
 $\therefore r = 3(\text{cm})$

32. 다음 그림의 직사각형 ABCD 에서 $\overline{AB}=5,\ \overline{BC}=8$ 이다. $\triangle ACD$ 의 내심 I 를 지나고 변 AB, BC 에 평행한 직선을 그어 \square ABCD 의 네 변과 만나는 점을 각각 E,F,G,H 라 할 때, □GBFI 의 넓이를 구 하여라.

Η

▷ 정답: 20

▶ 답:



와의 교점을 K, L 이라고 한다. Δ CFK 와 Δ IJK 에서 $\angle \mathrm{CFK} = \angle \mathrm{IJK} = 90\,^{\circ}$

 $\angle CKF = \angle IKJ$ (맞꼭지각)

 $\overline{\mathrm{CF}} = \overline{\mathrm{HI}} = \overline{\mathrm{IJ}}$ $\triangle \mathrm{CFK} \equiv \triangle \mathrm{IJK} \; (\mathrm{ASA} \; \text{합동})$

같은 방법으로 $\triangle AGL \equiv \triangle IJL$

 $\therefore \ \Box \text{GBFI} = \triangle \text{ABC} = \frac{1}{2} \Box \text{ABCD} = \frac{1}{2} \times 5 \times 8 = 20$

33. 좌표평면 위에 있는 직선 y=2 위의 한 점 A 와 x 축 위의 한 점 B, 그리고 $C(0,\ 1)$ 이 이루는 삼각형이 $\angle C=90^\circ$ 인 직각삼각형이 되기 위한 선분 AB 의 길이의 최솟값을 구하여라.

답:

▷ 정답: 2

