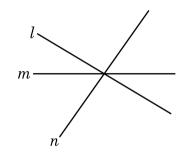
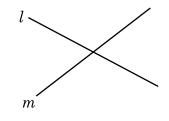
1. 다음 그림과 같이 세 직선 l, m, n 이 한 점에서 만날 때, 맞꼭지각은 모두 몇 쌍인가?



직선의 개수가 3 개 이므로 맞꼭지각의 개수는
$$3 \times (3-1) = 6$$
 (쌍)

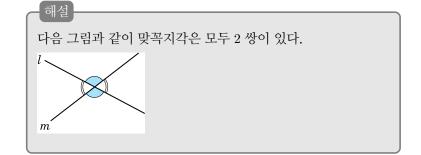
2. 서로 다른 두 직선 l, m 이 한 점에서 만날 때, 맞꼭지각은 모두 몇 쌍인지 구하여라.



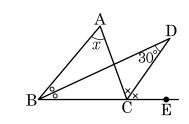
쌍

답:

▷ 정답: 2 <u>쌍</u>



3. 다음 그림에서 \angle ABC, \angle ACE 의 이등분선의 교점을 D 라 한다. \angle D = 30° 일 때, \angle x 의 크기는?



해설

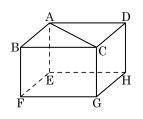
$$\angle x + \angle B = 2(30^\circ + \angle DBC)$$
 인데 $2\angle DBC = \angle B$ 이므로 $\angle x = 60^\circ$ 이다.

④ 3개 ⑤ 47

E G

꼬인 위치에 있는 모서리는 모서리 AE, EF, DH, HG의 4개이다.

다음 그림과 같은 직육면체에서 변 AC 와 꼬인 위치에 있는 모서리를 모두 구하여라.

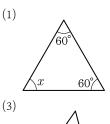


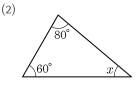
▶ 답:

5.

▷ 정답: BF, DH, EF, FG, GH, EH

____ 꼬인 위치에 있는 모서리는 BF, DH, EF, FG, GH, EH 이다. 6. 다음 그림에서 x의 값을 구하여라.





x 55° 75°

▶ 답:

▶ 답:

답:

▷ 정답: (1) 60°

➢ 정답: (2) 40°

➢ 정답: (3) 50°

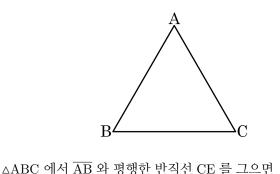
해설

(1)
$$\angle x = 180^{\circ} - (60^{\circ} + 60^{\circ}) = 60^{\circ}$$

(2) $\angle x = 180^{\circ} - (80^{\circ} + 60^{\circ}) = 40^{\circ}$

(3) $\angle x = 180^{\circ} - (55^{\circ} + 75^{\circ}) = 50^{\circ}$

7. 다음은 △ABC 의 세 내각의 합이 180° 임을 보이는 과정이다. ⑤ ⑥ 에 들어갈 것으로 알맞은 것은?



ΔABC 에서 AB 되 성영한 현색전 CE 를 그르는
(⑤) = ∠ECD(동위각)
∠BAC = ∠ACE (엇각)

따라서 △ABC 세 내각의 합은

 $\angle ABC + (\bigcirc) + \angle BAC = \angle ECD + \angle BCA + \angle ACE = 180^{\circ}$

① ∠ABC, ∠BCE

② ∠ABC , ∠BCA

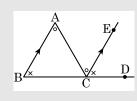
③ ∠ACE,∠BCE

④ ∠ACE, ∠BCA

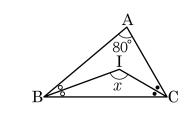
⑤ ∠BCE, ∠ECD

해설 ____

 $\triangle ABC$ 에서 \overline{AB} 와 평행한 반직선 CE 를 그으면 $\angle ABC = \angle ECD$ (동위각)



따라서, △ABC 세 내각의 합은 ∠ABC + ∠BCA + ∠BAC = ∠ECD + ∠BCA + ∠ACE = 180° 8. 다음 그림의 $\triangle ABC$ 에서 $\angle B$ 와 $\angle C$ 의 이등분선의 교점을 I 라고 하자. $\angle A=80^\circ$ 일 때, $\angle x$ 의 크기는?

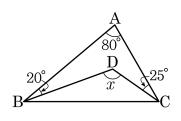


△ABC 에서
$$2\angle IBC + 2\angle ICB + 80^{\circ} = 180^{\circ}$$

∴ $\angle IBC + \angle ICB = 50^{\circ}$

 $\triangle BIC \text{ old} \ \angle x = 180^{\circ} - (\angle IBC + \angle ICB) = 130^{\circ}$

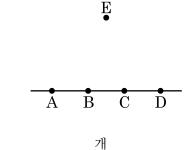
9. 다음 그림에서 $\angle x$ 의 크기를 구하면?



①
$$115^{\circ}$$
 ② 120° ③ 125° ④ 130° ⑤ 135°

$$80^{\circ} + 20^{\circ} + \angle DBC + 25^{\circ} + \angle DCB = 180^{\circ}$$
 이므로 $\angle DBC + \angle DCB = 55^{\circ}$
 $x = 180^{\circ} - 55^{\circ} = 125^{\circ}$

10. 다음 그림과 같이 한 직선 위에 네 개의 점 A, B, C, D 와 직선 밖의 한 점 E 가 있을 때, 이 중 두 점을 골라 만들 수 있는 반직선의 개수를 구하여라.

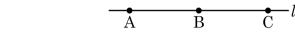


▷ 정답: 14 개

답:

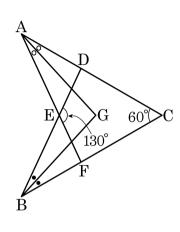
해설 한 직선 위에 놓인 서로 다른 반직선은 \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{BA} , \overrightarrow{CB} , \overrightarrow{DC} 이고, 한 직선 위에 놓인 4 개의 점과 직선 밖의 점 E 로 정해지는 반직선은 \overrightarrow{AE} , \overrightarrow{EA} , \overrightarrow{BE} , \overrightarrow{EB} , \overrightarrow{CE} , \overrightarrow{EC} , \overrightarrow{DE} , \overrightarrow{ED} 이다. 따라서 모두 14개이다.

11. 다음 그림과 같이 직선 l위에 있는 세 점 A, B, C 중에서 두 점을 골라 만들 수 있는 직선, 반직선, 선분의 개수를 각각 a,b,c라 할 때, a-b+c의 값을 구하여라.



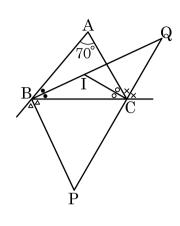
작성은
$$l$$
의 1 개 이므로 $a=1$, 반직선은 \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{BA} , \overrightarrow{CB} 의 4 개 이므로 $b=4$, 선분은 \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{BC} 의 3 개 이므로 $c=3$
∴ $a-b+c=1-4+3=0$

12. 다음 그림에서 \angle C = 60°, \angle A, \angle B의 이등분선의 교점을 G, \angle DEF = 130°일 때, \angle AGB의 크기를 구하여라.



해설
$$\angle EAG = \angle a$$
, $\angle EBG = \angle b$ 라 하면 $\angle AEB = \angle A + \angle B + \angle C = 2\angle a + 2\angle b + 60^{\circ}$ $\angle AEB = \angle DEF$ 이므로 $130^{\circ} = 2\angle a + 2\angle b + 60^{\circ}$

 $\therefore \angle a + \angle b = 35^{\circ}$ $\angle AGB = \angle a + \angle b + \angle C = 35^{\circ} + 60^{\circ} = 95^{\circ}$ **13.** 다음 그림의 △ABC에 대하여 ∠BIC+∠BPC+∠BQC의 크기를 구하여라.



▶ 답:

➢ 정답: 215°

해설

i) ∠IBC = ∠a, ∠ICB = ∠b 라 하면 △ABC 에서 70° + 2∠a + 2∠b = 180°

$$\therefore \angle a + \angle b = 55^{\circ}$$

$$\therefore \angle BIC = 180^{\circ} - (\angle a + \angle b) = 125^{\circ}$$

ii)
$$\angle CBP = \angle c$$
, $\angle ACQ = \angle d$ 라 할 때,

$$2\angle a + 2\angle c = 180^{\circ}$$
, $2\angle b + 2\angle d = 180^{\circ}$ 이므로 $\angle IBP = \angle ICP = 90^{\circ}$

$$\therefore \angle BPC = 180^{\circ} - \angle BIC = 55^{\circ}$$

iii)
$$\triangle QIC$$
 에서 $\angle QIC + \angle QCI + \angle IQC = 180^{\circ}$

이다.