이차방정식 $x^2 - (a+5)x - 2a + 6 = 0$ 의 한 근이 $2\sqrt{3}\cos 30^\circ$ 일 때, 상수 *a* 의 값을 구하여라

해설

a=0이다.

답:

한 근이
$$2\sqrt{3} \times \frac{\sqrt{3}}{2} = 3$$
 이므로

한 근이
$$2\sqrt{3} \times \frac{\sqrt{3}}{2} = 3$$
 이므로 x 의 값에 대입하면

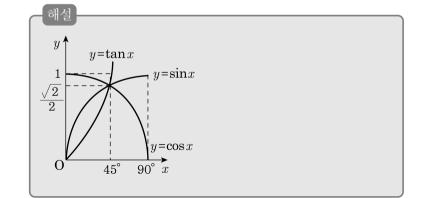
$$\begin{vmatrix} 9 - (a+5) \times 3 - 2a + 6 = 0 \\ -5a = 0 \end{vmatrix}$$

2. 다음 그림에서 선분 DC 의 길이는? (단, ∠B = 60°, ∠DAC = 45°, BC = 10cm)

①
$$\frac{5\sqrt{3}}{2}$$
 cm ② $\frac{5\sqrt{6}}{2}$ cm ③ $\frac{5\sqrt{2}}{3}$ cm ④ $\frac{5\sqrt{3}}{3}$ cm

$$\sin 60^{\circ} = \frac{\overline{AC}}{10}$$

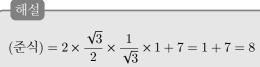
$$\therefore \overline{AC} = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3} \text{ (cm)}$$


$$\sin 45^{\circ} = \frac{x}{\overline{AC}}, \quad \frac{\sqrt{2}}{2} = \frac{x}{5\sqrt{3}}$$

$$\therefore x = 5\sqrt{3} \times \frac{\sqrt{2}}{2} = \frac{5\sqrt{6}}{2} \text{ (cm)}$$

3. 다음 보기의 삼각비의 값을 큰 것부터 차례로 나열하여라.

世月 tan 60°, sin 90°, cos 60° cos 90°, tan 45°, sin 45°


- ▶ 답:
- ightharpoonup 정답: $\tan 60^{\circ} > \tan 45^{\circ} = \sin 90^{\circ} > \sin 45^{\circ} > \cos 60^{\circ} > \cos 90^{\circ}$

다음 중 $2\sin 60$ ° $\tan 30$ ° $\cos 0$ ° + 7 의 값은?

(5) 10

5. 다음 그림과 같이 $\angle A=60^\circ$, $\overline{AB}=5 cm$, $\overline{AC}=9 cm$ 인 $\triangle ABC$ 에서 \overline{BC} 의 길이를 구하여라. 5 cm

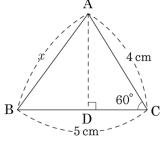
지점 :
$$\sqrt{61}$$
 cm

$$\overline{BH} = 5 \sin 60^{\circ} = 5 \times \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2} \text{ (cm)}$$

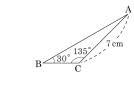
$$\overline{AH} = 5 \cos 60^{\circ} = 5 \times \frac{1}{2} = \frac{5}{2} \text{ (cm)}$$

$$\overline{CH} = 9 - \frac{5}{2} = \frac{13}{2} \text{ (cm)}$$

$$\overline{BC} = \sqrt{\left(\frac{5\sqrt{3}}{2}\right)^2 + \left(\frac{13}{2}\right)^2}$$


$$= \sqrt{\frac{75}{4} + \frac{169}{4}}$$

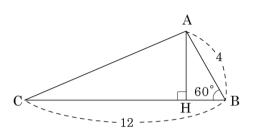
$$= \sqrt{\frac{244}{4}} = \sqrt{61} \text{ (cm)}$$


다음
$$\triangle ABC$$
 에서 $\angle C=60^\circ$, $\overline{AC}=4cm$, $\overline{BC}=5cm$ 일 때, \overline{AB} 의 길이를 구하면?

①
$$2\sqrt{3}$$
 ② $\sqrt{21}$ ③ $6\sqrt{3}$ ④ $3\sqrt{7}$ ③ $4\sqrt{3}$ B

6.

7. 다음 그림의 $\triangle ABC$ 에서 $\angle ACB=135^\circ, \ \overline{AC}=7cm$ 이다. \overline{AB} 의 길이를 구하여라.



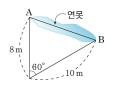
cm

정답: 7√2 cm

답:

8. 다음 그림과 같은 삼각형 ABC 에서 \overline{AC} 의 길이는?

①
$$3\sqrt{7}$$
 ② $4\sqrt{7}$ ③ $5\sqrt{7}$ ④ $6\sqrt{7}$ ⑤ $7\sqrt{7}$


$$\overline{AH} = \overline{AB} \times \sin 60^{\circ} = 4 \times \sin 60^{\circ} = 4 \times \frac{3}{2} = 2\sqrt{3}$$

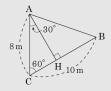
$$\overline{BH} = 4\cos 60^{\circ} = 4 \times \frac{1}{2} = 2$$

해설

$$\frac{\therefore \overline{CH} = 12 - 2 = 10}{\overline{AC} = \sqrt{(2\sqrt{3})^2 + 10^2}} \\
= \sqrt{12 + 100} = \sqrt{112} = 4\sqrt{7}$$

9. 다음 그림과 같이 연못 양쪽의 두 지점 A, B 사이의 거리는?

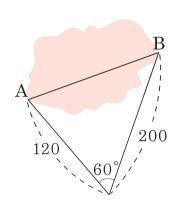
- (1) $2\sqrt{21}$ m
- ② $3\sqrt{21}$ m


 $3 4\sqrt{21} m$

 $4 6\sqrt{3}$ m

 $\Im 8\sqrt{3}$ m

점 A 에서 \overline{BC} 에 내린 수선의 발을 H 라 하면 $\overline{AB}^2 = \overline{AH}^2 + \overline{BH}^2$ 이고

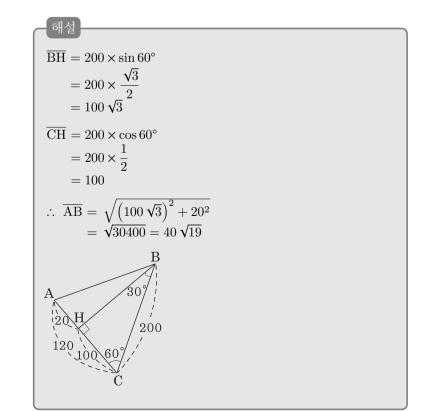

 $\overline{AH} = 8\sin 60^{\circ} = 4\sqrt{3}(m)$

 $\overline{BH} = 10 - \overline{CH}$ $= 10 - 8\cos 60^{\circ}$

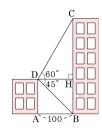
$$= 10 - 8 \times \frac{1}{2} = 6 \text{(m)}$$

 $\overline{AB}^2 = (4\sqrt{3})^2 + 6^2 = 84$ $\therefore \overline{AB} = 2\sqrt{21}(m)$

10. 직접 잴 수 없는 두 지점 A, B 사이의 거리를 구하기 위하여 다음 그림과 같이 측량하였다. 이 때, \overline{AB} 의 길이를 구하면?

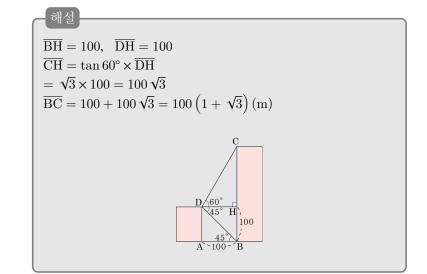


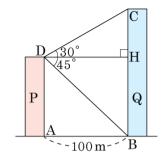
 $3 40\sqrt{15}$



 $\boxed{11}$ ② $40\sqrt{13}$

 $40\sqrt{17}$ $40\sqrt{19}$


11. 다음 그림과 같이 간격이 100m 인 두 건물이 있다. 왼쪽의 낮은 건물의 옥상에서 다음 건물을 올려다 본 각도는 60° 이고 내려다 본 각도는 45° 일 때, 다음 건물의 높이를 구하여라.


 \mathbf{m}

답:

ightharpoonup 정답: $100\left(1+\sqrt{3}\right)\underline{\mathrm{m}}$

12. 다음 그림과 같이 간격이 100m 인 두 건물 P, Q 가 있다. P 건물 옥상에서 Q 건물을 올려다 본 각도는 30° 이고. 내려다 본 각도는 45°일 때, Q 건물의 높이를 구하여라

$$ightharpoonup$$
 정답: $100\left(1+\frac{\sqrt{3}}{3}\right)$ m

 $\overline{BH} = \overline{AB} = \overline{AD} = \overline{DH} = 100(m)$ 이고, Q 건물의 높이는 $\overline{BC} = \overline{BH} + \overline{CH}$ 이다.

 $\frac{\sqrt{3}}{3} = 100 \left(1 + \frac{\sqrt{3}}{3} \right)$ m 이다.

 \mathbf{m}

 $\overline{\mathrm{CH}} = 100 an 30^{\circ}$ 이므로 Q 건물의 높이 $\overline{\mathrm{BC}} = 100 + 100 imes$