
구하여라.



cm

다음 그림에서 두 원은 동심원이다.  $\overline{BD} = 2cm$  일 때,  $\overline{AC}$  의 길이를

 ▶ 답:

 ▷ 정답:
 2 cm

해설

1.



 $\overline{AM} = \overline{DM}$   $\overline{BM} = \overline{CM}$ 

 $\frac{BM = CM}{AB = \overline{AM} - \overline{BM}}$ 

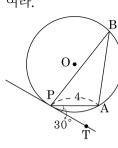
 $\overline{\mathrm{CD}} = \overline{\mathrm{DM}} - \overline{\mathrm{CM}}$ 

 $\underline{\cdot \cdot \overline{AB}} = \overline{CD}$ 

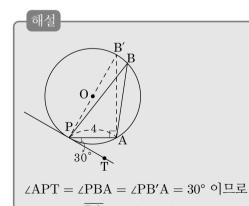
 $\overline{BD} = \overline{BC} + \overline{CD} = \overline{BC} + \overline{AB} = \overline{AC}$  $\therefore \overline{AC} = 2cm$  이 차방정식  $x^2 - (a+5)x - 2a + 6 = 0$  의 한 근이  $2\sqrt{3}\cos 30^\circ$  일 때, 상수 a 의 값을 구하여라.

해설

-5a = 0 a = 0 이다.


답:

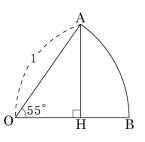
한 근이 
$$2\sqrt{3} \times \frac{\sqrt{3}}{2} = 3$$
 이므로


 $9 - (a+5) \times 3 - 2a + 6 = 0$ 

x 의 값에 대입하면

**3.** 다음 그림에서 직선 PT 가 원 O 의 접선일 때, 이 원의 지름을 구하여라.








 $\therefore \overline{\mathrm{B'P}} = 8$ 

$$\sin 30^{\circ} = \frac{\overline{PA}}{\overline{B'P}} = \frac{4}{\overline{B'P}} = \frac{1}{2}$$

 다음 그림과 같이 반지름의 길이가 1 이고, 중심각의 크기가 55°인 부채꼴 OAB 에서 AH⊥OB 일 때, △AOH 둘레의 길이를 구하여라. (단, sin 55° = 0.82, cos 55° = 0.57, tan 55° = 1.43으로 계산한다.)



답:

$$\triangle AOH$$
 에서  $\cos 55^{\circ} = \frac{\overline{OH}}{\overline{OA}} = \frac{\overline{OH}}{1} = \overline{OH} = 0.57$   
 $\sin 55^{\circ} = \frac{\overline{AH}}{\overline{OA}} = \frac{\overline{AH}}{1} = \overline{AH} = 0.82$ 

따라서  $\triangle AOH$  의 둘레의 길이는 1+0.57+0.82=2.39 이다.

5. 다음 그림과 같이  $\angle A=60^\circ$  ,  $\overline{AB}=5 cm$  ,  $\overline{AC}=9 cm$  인  $\triangle ABC$  에서  $\overline{BC}$ 의 길이를 구하여라. 5 cm

지점 : 
$$\sqrt{61}$$
 cm

$$\overline{BH} = 5 \sin 60^{\circ} = 5 \times \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2} \text{ (cm)}$$

$$\overline{AH} = 5 \cos 60^{\circ} = 5 \times \frac{1}{2} = \frac{5}{2} \text{ (cm)}$$

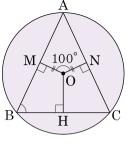
$$\overline{CH} = 9 - \frac{5}{2} = \frac{13}{2} \text{ (cm)}$$

$$\overline{BC} = \sqrt{\left(\frac{5\sqrt{3}}{2}\right)^2 + \left(\frac{13}{2}\right)^2}$$

$$= \sqrt{\frac{75}{4} + \frac{169}{4}}$$

$$= \sqrt{\frac{244}{4}} = \sqrt{61} \text{ (cm)}$$

6. 다음 그림의 사각형의 넓이는? A D
15cm 60° 120°


-20cm

③  $150\sqrt{2}\,\mathrm{cm}^2$ 

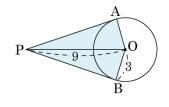
① 
$$300 \sqrt{2} \text{ cm}^2$$
 ②  $300 \sqrt{3} \text{ cm}^2$   
②  $150 \sqrt{3} \text{ cm}^2$  ③  $75 \sqrt{2} \text{ cm}^2$ 

해설 대각의 크기가 같은 사각형이므로 평행사변형이다. 
$$2 \times \frac{1}{2} \times 20 \times 15 \times \sin 60 \, ^\circ = 150 \, \sqrt{3} \, (\mathrm{cm}^2) \, \, \mathrm{이다}.$$

7. 다음 그림에서 원 O 는 ΔABC 의 외접원 이고,  $\overline{OM} = \overline{ON}$ ,  $\angle M = \angle N = \angle H =$ 90°, ∠MON = 100°일 때, ∠B 의 크기를 구하면?

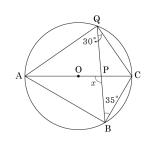


① 30°


② 40°

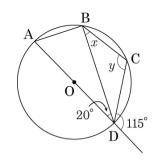
$$=\overline{\mathrm{AC}}$$

$$\overline{\mathrm{OM}} = \overline{\mathrm{ON}}$$
 이므로  $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$   
따라서  $\angle \mathrm{B} = \angle \mathrm{C}$  이다.  
 $\angle \mathrm{A} = 360\,^{\circ} - (90\,^{\circ} + 90\,^{\circ} + 100\,^{\circ}) = 80\,^{\circ}$   
 $\therefore \angle \mathrm{B} = \angle \mathrm{C} = (180\,^{\circ} - 80\,^{\circ}) \times \frac{1}{2} = 50\,^{\circ}$ 


당, PA, PB 는 원 O 의 접선)

① 
$$6\sqrt{3}$$
 ②  $9\sqrt{3}$  ③  $12\sqrt{3}$ 
④  $18\sqrt{2}$  ⑤  $20\sqrt{2}$ 




PA = 
$$\sqrt{9^2 - 3^2} = 6\sqrt{2}$$
  
 $\triangle PAO = 6\sqrt{2} \times 3 \times \frac{1}{2} = 9\sqrt{2}$   
 $\therefore \square PBOA = 9\sqrt{2} \times 2 = 18\sqrt{2}$ 

9. 다음 그림에서  $\overline{AC}$  는 원 O 의 지름이고  $\angle QBC = 35^\circ$ ,  $\angle BQC = 30^\circ$  일 때,  $\angle APB$  의 크기는?



해설

**10.** 다음 그림에서 x+y 의 값을 구하여라.



▶ 답:

➢ 정답 : 135°

해설

 $\angle {
m ABD} = 90\,^{\circ}$ 이므로  $90\,^{\circ} + x\,^{\circ} = 115\,^{\circ}$ 

 $\therefore x = 25^{\circ}$ 

 $\triangle ABD$  에서  $\angle BAD = 180\,^{\circ} - (90\,^{\circ} + 20\,^{\circ}) = 70\,^{\circ}$   $\angle BAD + \angle BCD = 190\,^{\circ}$  이므로  $y\,^{\circ} = 180\,^{\circ} - 70\,^{\circ} = 110\,^{\circ}$ 

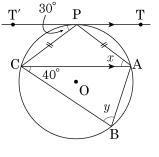
 $\therefore y = 110^{\circ}$ 

 $\therefore x + y = 25^{\circ} + 110^{\circ} = 135^{\circ}$ 

## 11. 그림과 같이 원 O 에 사각형 ABCD 가 내접하고 있다고 할 때 $\frac{3(\angle x + \angle y)}{2}$ 의 값은 얼마인가?

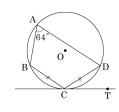
•

$$\Box$$
ABCD 가 원에 내접하므로  $\angle x + \angle y = 180^\circ$  이다.


$$\therefore \frac{3(\angle x + \angle y)}{2} = 270^{\circ}$$

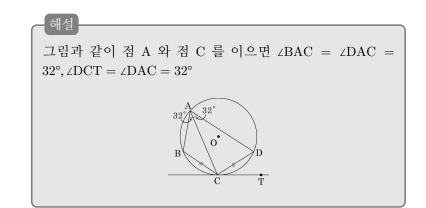
**12.** 다음 그림에서 직선 TT' 이 원 O의 접 선일 때,  $\angle x + \angle y$  의 크기는?

> ① 50° ② 60° ③ 70° ④ 80° ⑤ 90°

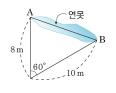

> > 해설

 $\therefore \ \angle x + \angle y = 90^{\circ}$ 




$$\angle x = 30^{\circ}$$
  
  $\angle ACP = 30^{\circ}$  (∵  $\overleftarrow{TT'}$  //  $\overrightarrow{AC}$ )  
  $\triangle ACP$ 는 이등변삼각형이므로  
  $\angle APC = 180^{\circ} - 30^{\circ} - 30^{\circ} = 120^{\circ}$   
  $\Box ABCP$ 는 내접사각형이므로  
  $\angle APC + \angle ABC = 180^{\circ}$   
  $\angle y = 180^{\circ} - \angle APC = 60^{\circ}$ 

13. 다음 그림에서  $\square$ ABCD 는 원에 내접하고  $\overline{BC} = \overline{CD}$ ,  $\angle BAD = 64^\circ$  일 때,  $\angle DCT$  의 크기를 구하여라. (단,  $\overrightarrow{CT}$  는 접선이다.)



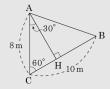

▶ 답:

➢ 정답: 32°



14. 다음 그림과 같이 연못 양쪽의 두 지점 A,B 사이의 거리는?




- $2\sqrt{21}$ m
- ②  $3\sqrt{21}$ m
- $3 4\sqrt{21} m$

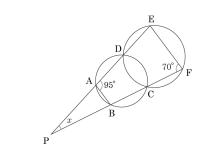
 $4 6\sqrt{3}$  m

 $\bigcirc 8\sqrt{3}\text{m}$ 



점 A 에서  $\overline{BC}$  에 내린 수선의 발을 H 라 하면  $\overline{AB}^2 = \overline{AH}^2 + \overline{BH}^2$  이고




 $\overline{AH} = 8 \sin 60^{\circ} = 4 \sqrt{3} (m)$ 

 $\overline{BH} = 10 - \overline{CH}$   $= 10 - 8\cos 60^{\circ}$   $= 10 - 8 \times \frac{1}{2} = 6(m)$ 

 $\overline{AB}^2 = (4\sqrt{3})^2 + 6^2 = 84$ 

 $\therefore \overline{AB} = 2\sqrt{21}(m)$ 

**15.** 다음 그림에서 두 원은 두 점 C, D 에서 만나고, ∠EFC = 70°, ∠BAD = 95° 일 때, ∠x 의 크기는?



① 
$$20^{\circ}$$
 ②  $25^{\circ}$  ③  $30^{\circ}$  ④  $35^{\circ}$  ⑤  $40^{\circ}$ 

보조선 CD 를 연결하면 내접하는 사각형의 성질에 의해 
$$\angle DAB = \angle DCF = 95^\circ$$
 이고 대각의 합  $\angle DEF = 180^\circ - \angle DCF = 85^\circ$  이다. 따라서  $\angle x = 180^\circ - 70^\circ - 85^\circ = 25^\circ$  이다.