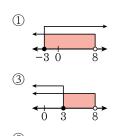
1. 다음 부등식의 해가 없을 때, 상수 m의 값의 합은?

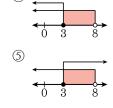
 $m^2x - 1 > m(x - 1)$

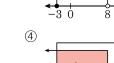
① -2 ② -1 ③ 0 ④ 1 ⑤ 2

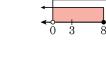
2. (a+b)x+(2a-3b)<0의 해가 $x<-\frac{1}{3}$ 일 때, 부등식 (a-3b)x+(b-2a)>0을 풀어라.

답: ____

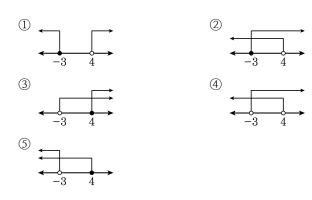

3. 연립부등식 $\begin{cases} 3x + 2 \le 11 \\ 2 - x < 3x + 10 \end{cases}$ 을 만족시키는 가장 큰 정수를 a, 가장 작은 정수를 b 라고 할 때, a+b의 값은?


① 2 ② 3 ③ 5 ④ 8 ⑤ 11


4. 연립부등식


$$\begin{cases} 2x + 3 \le 3(x + 2) \end{cases}$$

 $\begin{cases} 2(x-4) < x \\ 2x+3 \le 3(x+2) \end{cases}$ 의 해를 수직선 위에 바르게 나타낸 것은?



5. 부등식 $4x-1 \le 3x+1 < 2x+5$ 를 만족하는 x 의 값 중 가장 큰 정수를 구하여라.

답: _____

6. 연립부등식 $\begin{cases} 7x - 10 > 2x + 10 \\ 5x + 3 \le 2(x - 3) \end{cases}$ 의 해를 수직선 위에 바르게 나타 낸 것은?

7. 연립부등식 $-3 < \frac{x+a}{4} < 1$ 의 해가 -9 < x < b 일 때, a+b 의 값을 구하여라.

답: ____

8. 연립부등식

 $\begin{cases} 12 - x < 2(x+1) + 1 < 4x - 1 \\ -a < x < a \end{cases}$ 의 해가 없을 때, 양수 a 의 값의

범위는?

① 0 < a < 2 ② $0 < a \le 2$ ③ 0 < a < 3 ④ 0 < a < 3

9. 지연이는 100 원짜리와 500 원짜리 동전으로만 5000 원을 가지고 있다. 100 원짜리 동전의 개수는 500 원짜리 동전의 개수의 2 배보다는 많고 3 배보다는 적을 때, 500 원짜리 동전의 개수를 구하여라.

▶ 답: _____ 개

10. 부등식 $|x^2 - 4x - 6| \le 6$ 의 해를 구하면?

- $-2 \le x < 6$ ② $0 \le x \le 4$
- $x \le 0$ 生는 $x \ge 4$
- $x \le -2 \Xi \stackrel{\smile}{\sqsubset} x \ge 6$ ④ $-2 \le x \le 0 \Xi \stackrel{\smile}{\smile} 4 \le x \le 6$

- 11. 이차부등식 $x^2 2kx + 2k \le 0$ 이 해를 갖지 않을 때, 실수 k값의 범위 는?

 - ① $-1 \le k \le 0$ ② -2 < k < 0
 - ⑤ k < 0, 또는k > 2

12. $\alpha < 0 < \beta$ 이고 이차부등식 $ax^2 + bx + c < 0$ 의 해가 $\alpha < x < \beta$ 일 때, 이차부등식 $cx^2 + bx + a < 0$ 의 해는?

- ① $\frac{1}{\alpha} < x < \frac{1}{\beta}$ ② $\frac{1}{\beta} < x < \frac{1}{\alpha}$ ③ $x < \frac{1}{\alpha} \stackrel{\text{L}}{=} x > \frac{1}{\beta}$ ④ $x < \frac{1}{\beta} \stackrel{\text{L}}{=} x > \frac{1}{\alpha}$

⑤ b 의 부호에 따라 다르다.

13. 양의 실수 a에 대하여 $-x^2+7x-10 \ge 0$ 의 모든 해가 $x^2-4ax+3a^2 \le 0$ 을 만족할 때, a의 값의 범위는?

① $\frac{1}{3} \le a \le 2$ ② $\frac{2}{3} \le a \le 2$ ③ $\frac{5}{3} \le a \le 2$ ④ ③ $2 \le a \le 5$

값을 구하여라.

14. 부등식 $ax^2 - 2ax + 1 \le 0$ 이 단 하나의 해를 갖도록 하는 실수 a 의

답: _____

15. 이차함수 $y = x^2 + x + 1$ 의 그래프가 함수 $y = kx^2 + kx - 1$ 의 그래프 보다 항상 위쪽에 존재하도록 하는 실수 k 의 값의 범위를 구하면?

(4) $1 < k \le 5$ (5) $1 \le k < 7$

① $-5 \le k < 1$ ② $-2 < k \le 3$ ③ $-7 < k \le 1$

16. 연립부등식 $\begin{cases} x^2 + ax + b < 0 \\ |x - 2| \ge 1 \end{cases}$ 의 해가

-3 < x ≤ 1 이고, |a| + |b| = 5를 만족하는 두 실수 a,b의 합 a + b의 값은?

① -2 ② -1 ③ 0 ④ 1 ⑤ $\frac{3}{2}$

개수는? ① 4 ② 6 ③ 7

17. n, n+5, n+8 이 둔각삼각형의 세 변의 길이가 되는 자연수 n 의

④ 9 ⑤ 무수히 많다.

18. x에 관한 이차방정식 $x^2 - ax + 9 = 0$ 이 x < 1에서 두 개의 실근을 갖도록 하는 실수 a의 범위를 구하면 $a \le k$ 이다. 이 때, k의 값을 구하여라.

〕 답: k = _____

19. 이차방정식 $x^2 - mx + 4 = 0$ 의 두 근 사이에 1 이 있도록 하는 실수 *m* 의 값의 범위는?

① m > 2 ① m > 5

① m < -5 ② m > -2 ③ -2 < m < 2

- **20.** 이차방정식 $x^2 + ax 2 = 0$ 의 두 실근 α , β 에 대하여 $-2 < \alpha < 0$, $1 < \beta < 3$ 이 성립하도록 하는 실수 a의 값의 범위는?
- ① $-\frac{13}{3} < a < -1$ ② $-\frac{10}{3} < a < 0$ ③ $-\frac{7}{3} < a < 1$ ④ $-\frac{5}{3} < a < 2$ ⑤ $-\frac{2}{3} < a < 3$