
1. 다음 그림에서 $\angle x + \angle y$ 의 크기는?

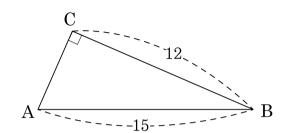
①
$$97^{\circ}$$
 ② 110° ③ 117° ④ 120° ⑤ 125°

$$\angle x = 52^{\circ} \times 2 = 104^{\circ}$$

2:8 = y:52, $\angle y = 13$
 $\therefore \ \angle x + \angle y = 117^{\circ}$

2. 다음 그림에서 ∠ABC = 90°, ∠CAB = 60° 이고, ĀC = CD = 2 일 때, tan 15° 의 값은?

①
$$\sqrt{2}$$
 ② $1 + \sqrt{2}$ ③ $1 + \sqrt{3}$ ④ $2 + \sqrt{3}$

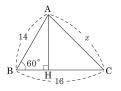

$$\angle CAB = 60^\circ$$
 이므로 $\angle ACB = 30^\circ$
 $\triangle ACD$ 는 이등변삼각형이므로 $\angle CDA = \frac{1}{2} \times 30^\circ = 15^\circ$
 $\triangle ABC$ 에서
 $\overline{AB} = \overline{AC} \cos 60^\circ = 1, \ \overline{BC} = \overline{AC} \sin 60^\circ = \sqrt{3}$ 이므로
 $\tan 15^\circ = \tan D = \frac{1}{2+\sqrt{3}} = 2-\sqrt{3}$

- 3. 다음 중 옳지 <u>않은</u> 것을 골라라. (단, $0^{\circ} \le A \le 90^{\circ}$)
 - ① A 값이 커지면 sinA 의 값도 커진다.
 - \bigcirc A 값이 커지면 \cos A 의 값은 작아진다.
 - © A 값이 커지면 tan A 의 값도 커진다.
 - ② sinA 의 최솟값은 0, 최댓값은 1 이다.
 - □ tan A 의 최솟값은 0 , 최댓값은 1 이다.
 - 답:
 - ▷ 정답: □

해설

ⓐ $\tan A$ 의 최솟값은 $\tan 0^\circ = 0$ 이지만 $\tan 90^\circ$ 의 값은 정할 수 없으므로 $\tan A$ 의 최댓값은 알 수 없다.

4. 다음 그림과 같은 직각삼각형 ABC 에 대하여 $\sin A \times \sin B$ 의 값을 구하여라.


$$ightharpoonup$$
 정답: $rac{12}{25}$

$$\overline{AC} = \sqrt{15^2 - 12^2} = \sqrt{81} = 9$$

$$\sin A = \frac{12}{15} = \frac{4}{5}, \sin B = \frac{9}{15} = \frac{3}{5}$$

$$\therefore \sin A \times \sin B = \frac{4}{5} \times \frac{3}{5} = \frac{12}{25}$$

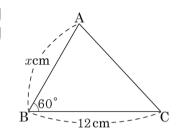
5. 다음 그림에서 x 의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $2\sqrt{57}$

$$\overline{AH} = 14\sin 60^\circ = 14 \times \frac{\sqrt{3}}{2} = 7\sqrt{3}$$

$$\overline{BH} = 14\cos 60^{\circ} = 14 \times \frac{1}{2} = 7$$

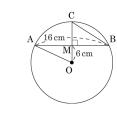

$$\overline{\mathrm{CH}} = 16 - 7 = 9$$

$$x = \sqrt{(7\sqrt{3})^2 + 9^2} \\ = \sqrt{147 + 81}$$

$$=\sqrt{228}$$

$$=2\sqrt{57}$$

다음 그림과 같은 삼각형 ABC의 넓이 가 30√3 cm² 일 때, x의 값을 구하여라.


$$10\underline{\mathrm{cm}}$$

따라서 x = 10 (cm)

▷ 정답 :

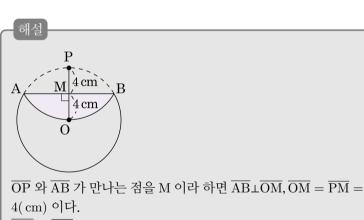
$$\triangle ABC = \frac{1}{2} \times x \times 12 \times \sin 60^{\circ} = 30 \sqrt{3}$$
$$= \frac{1}{2} \times x \times 12 \times \frac{\sqrt{3}}{2} = 30 \sqrt{3}$$

7. 다음 그림의 원 O 에서 $\overline{AB}\bot\overline{OC}$ 이고, $\overline{AB}=16\mathrm{cm},\ \overline{OM}=6\mathrm{cm}$ 일 때, \overline{BC} 의 길이는?

$$1 \sqrt{5}$$
cm

$$\bigcirc 4\sqrt{14}\text{cm}$$

$$3 8\sqrt{3}$$
cm

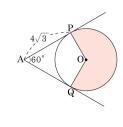

$$4 8\sqrt{5}$$
cm

m
$$\Im 9\sqrt{3}$$
cm

 $\overline{AM}=\overline{BM}=8\mathrm{cm},\ \Delta\mathrm{AMO}$ 에서 $\overline{AO}=10\,\mathrm{cm},$ 반지름이 $10\,\mathrm{cm}$ 이므로 $\overline{\mathrm{CM}}=4\mathrm{cm}$ $\Delta\mathrm{CMB}$ 에서 $\overline{\mathrm{BC}}=4\sqrt{5}\mathrm{cm}$ 이다. 8. 다음 그림과 같이 반지름의 길이가 8cm 인 원 위의 점 P 를 중심 O 에 닿도록 접었을 때 생기는 현 AB 의 길이는? ① $5\sqrt{3}$ cm ② $6\sqrt{3}$ cm

 $48\sqrt{3}\,\mathrm{cm}$ $3 7\sqrt{3} \text{ cm}$

⑤ $9\sqrt{3}$ cm


 $\overline{AM} = \overline{BM}$

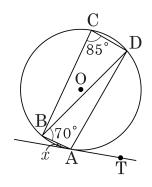
$$AM = BM$$
$$= \sqrt{\overline{OA}^2 - \overline{OM}^2}$$

 $=\sqrt{8^2-4^2}$

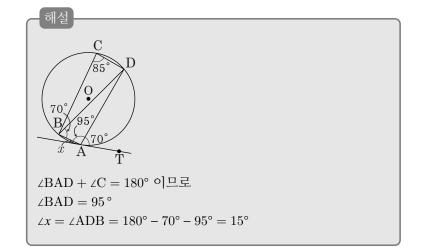
 $=\sqrt{64-16}$

 $=\sqrt{48}=4\sqrt{3}$ (cm) 이다. 따라서 $\overline{AB} = 2\overline{AM} = 8\sqrt{3}$ (cm) 이다. 9. 다음 그림에서 \overrightarrow{AP} , \overrightarrow{AQ} 는 원 O 의 접선이고, 점 P, Q 는 원 O 의 접점이다. $\overrightarrow{AP} = 4\sqrt{3}$, $\angle PAQ = 60^{\circ}$ 일 때, 색칠한 부분의 부채꼴의 넓이를 구하여라.

 cm^2


▶ 답:

ightharpoonup 정답: $\frac{32}{3}\pi \ \underline{\mathrm{cm}^2}$


$$\angle POQ = 360^{\circ} - (60^{\circ} + 90^{\circ} + 90^{\circ}) = 120^{\circ}$$

 $\triangle APO$ 에서 \overline{AP} : $\overline{PO} = \sqrt{3}$: 1

 $4\sqrt{3}:\overline{PO} = \sqrt{3}:1$ $\therefore \overline{PO} = 4$ (색칠한 부분의 넓이)= $\pi \times 4^2 \times \frac{240^\circ}{360^\circ} = \frac{32}{3}\pi$

10. 다음 그림에서 $\angle x$ 의 크기로 알맞은 것은?

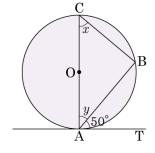
① 11° ② 12° ③ 13° ④ 14°

해설
$$\angle B = x$$

$$\angle B = x$$

 $\angle CED = x + y$
 $\triangle ACE$ 에서

 $\angle A + \angle CEA + \angle ACE = 180^{\circ}$ $\angle A + (x + y) + (x + y) = 180^{\circ}$ $\therefore \angle A = 40^{\circ}$

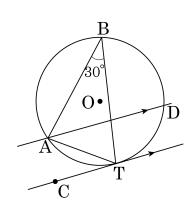

12. 다음 그림에서 직선 AT가 원 O의 접선일 때, 2x - 2y의 크기는?

① 5°

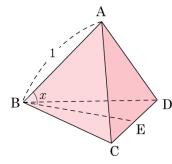
②10°

③ 15°

4 20° 5 25°



해설


원의 접선과 그 접점을 지나는 현이 이루는 각의 크기는 내부에 있는 호에 대한 원주각의 크기와 같으므로 $x=50\,^\circ$ 또한, 반원에 대한 원주각은 $90\,^\circ$ 이므로 $y=90\,^\circ-50\,^\circ=40\,^\circ$

따라서 $\angle x - \angle y = 50$ °-40°= 10°이다.

13. 다음 그림에서 θ O 의 현 AD 와 접선 CT 는 평행하고 \angle ABT = 30° 일 때, \angle TAD 의 크기를 구하여라.

14. 다음 그림과 같이 밑변이 △BCD 이 고, 한 모서리의 길이가 1 인 정사면 체 A – BCD 가 있다. CD 의 중점을 E, $\angle ABE = x$ 라 할 때, $\cos x$ 의 값 을 구하면?

①
$$\frac{\sqrt{2}}{2}$$
 ② $\frac{\sqrt{3}}{3}$ ③ $\sqrt{2}$ ④

 $\overline{\mathrm{BE}} = \frac{\sqrt{3}}{2}$ 이고,

의 무게중심이므로 $\overline{BH} = \frac{2}{3} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{3}$

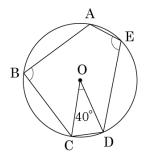
따라서 $\cos x = \frac{\sqrt{3}}{\frac{3}{1}} = \frac{\sqrt{3}}{3}$ 이다.

B 구하면?

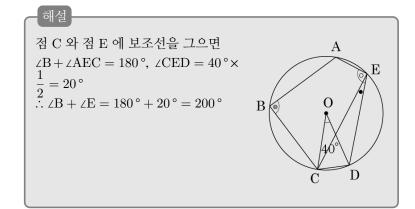
B
$$\frac{\sqrt{2}}{2}$$
 ② $\frac{\sqrt{3}}{3}$ ③ $\sqrt{2}$ ④ $\sqrt{3}$ ⑤ $\frac{\sqrt{6}}{3}$

해설

ABCD 는 정삼각형이므로


 $\overline{BE} = \frac{\sqrt{3}}{2}$ 이고,

점 A 에서 \overline{BE} 로 내린 수선의 발을 점 H 라고 하면, 삼각형 BCD 의 무게중심이므로


 $\overline{BH} = \frac{2}{3} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{3}$

따라서 $\cos x = \frac{\sqrt{3}}{1} = \frac{\sqrt{3}}{3}$ 이다.

15. 다음 그림에서 오각형 ABCDE 는 원 O 에 내접하고 ∠COD = 40°일 때, ∠B + ∠E 의 크기는?

① 180° ② 185° ③ 190° ④ 195° ⑤ 200°

