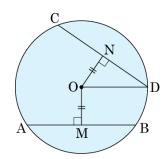

1. 다음 그림에서 $\angle A = 70^{\circ}$ 일 때, $\angle B$ 의 크기는?

① 55° ② 60° ③ 65° ④ 70° ⑤ 75°

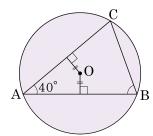
원의 중심에서 접선까지의 거리가 같으므로 $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ $\Delta \mathrm{ABC}$ 는 이등변삼각형이므로,


 $\angle B = (180^{\circ} - 70^{\circ}) \div 2 = 55^{\circ}$

해설

- 2. 원의 중심에서 $3 \, \mathrm{cm}$ 떨어져 있는 현의 길이가 $8 \mathrm{cm}$ 일 때, 이 원의 넓이는?
 - ① $25\pi \,\mathrm{cm}^2$ ② $28\pi \,\mathrm{cm}^2$ ③ $32\pi \,\mathrm{cm}^2$ $4 36\pi \,\mathrm{cm}^2$ $5 38\pi \,\mathrm{cm}^2$

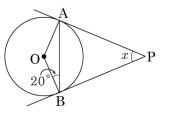
해설


그림에서 $\overline{\mathrm{AH}}$ = 4(cm) 이므로 r = √3² + 4² = 5(cm) 따라서, 원 O 의 넓이는 π × 5² = O $25\pi (\mathrm{\,cm^2})$ 3 cm **3.** 다음 그림에서 $\overline{OM} = \overline{ON}$ 일 때, 옳지 <u>않은</u> 것은?

- ① $\overline{OA} = \overline{OC}$ ③ $\overline{CN} = \overline{BM}$
- $(4) 5.0 pt \widehat{AB} = 5.0 pt \widehat{CD}$

 $\boxed{\textcircled{5}} \overline{AM} = \overline{OM}$

다음 그림과 같이 ∠A = 40 ° 일 때, ∠ABC 4. 의 크기는?


① 40° ② 50° ③ 55° ④ 65°

⑤ 70°

해설

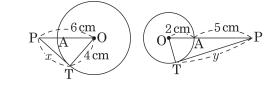
중심에서 현에 내린 수선의 길이가 같으므로 $\overline{\mathrm{AC}}=\overline{\mathrm{AB}}$ 이고 $\Delta\mathrm{ABC}$ 는 이등변삼각형 $\therefore \angle ABC = (180\,^{\circ} - 40\,^{\circ}) \times \frac{1}{2} = 70\,^{\circ}$

 다음 그림에서 PA, PB 는 원 O 의 접 선이고 ∠ABO = 20°일 때, ∠APB 의 크기를 구하여라.

➢ 정답: 40_°

OB: 40_

해설 접선의 성질의 의해 ∠OAP = 90° 이고,


▶ 답:

△OAB 는 이등변삼각형이므로 ∠BAP = ∠ABP = 70°

△APB 는 이등변삼각형

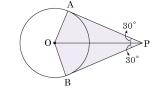
 $\therefore \angle PAB = 180^{\circ} - 140^{\circ} = 40^{\circ}$

6. 다음 그림에서 $\overline{\mathrm{PT}}$ 는 원 O 의 접선일 때, xy 의 값은?

<u>(1)</u>30

해설

② 32 ③ 40 ④ 46


⑤ 52

∠T = 90° 이므로 $x = \sqrt{6^2 - 4^2} = 2\sqrt{5}$ (cm)

∠T = 90° 이므로

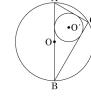
 $y = \sqrt{7^2 - 2^2} = 3\sqrt{5} \text{ (cm)}$ ∴ $xy = 2\sqrt{5} \times 3\sqrt{5} = 30$

7. 다음 그림에서 \overline{PA} , \overline{PB} 는 원 O 의 접선이고 $\overline{AP}=4\sqrt{3} \mathrm{cm}$ 일 때, 색칠한 도형의 둘레는?

- ① 6cm
- ② $(6+6\sqrt{2})$ cm $(8 + 8\sqrt{3})$ cm
 - $3 12\sqrt{3}$ cm
- $(4 + 4\sqrt{3})$ cm

 $\sqrt{3} \ \overline{OA} = \overline{AP}$

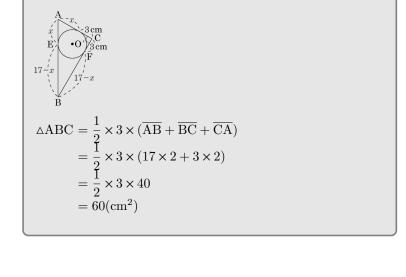
해설

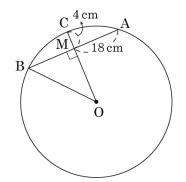

 $\sqrt{3} \ \overline{OA} = 4 \sqrt{3}$

 $\therefore \overline{\mathrm{OA}} = 4\,\mathrm{cm}$

따라서 색칠된 도형의 둘레는

 $(8+8\sqrt{3})$ cm

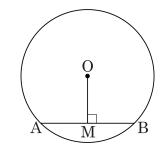

8. 다음 그림에서 $\triangle ABC$ 의 외접원의 지름의 길이는 17cm 이고 내접원 의 지름의 길이는 6cm 이다. \overline{AB} 가 외접원의 지름일 때, $\triangle ABC$ 의 넓이를 구하여라. (단, $\angle C$ 는 직각이다.)


 ► 답:

 ▷ 정답:
 60 cm²

 $\underline{\mathrm{cm}^2}$

- 9. 다음 그림을 보고, θO 의 반지름의 길이를 구하면?

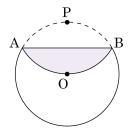

① 40 (cm) ② 41.5 (cm) ③ 42.3 (cm) ④ 42.5 (cm) ⑤ 42.7 (cm)

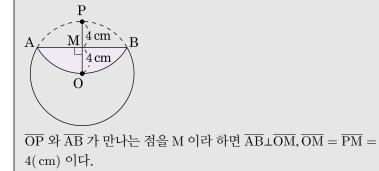
해설

원 O 의 반지름의 길이를 x라 할 때 $x^2 = (x-4)^2 + 18^2$ $x^2 = x^2 - 8x + 16 + 324$ 8x = 340

 $\therefore x = 42.5 \text{ (cm)}$

10. 다음 그림에서 원의 중심O 에서 현AB 에 내린 수선은 현을 이등분함 을 설명할 때, 쓰이지 않는 것은?


- $\overline{\text{3}}\overline{\text{AM}} = \overline{\text{BM}}$
- ① $\angle OMA = \angle OMB$ ② $\overline{OA} = \overline{OB}$ ④ OM 은 공통


해설

 $\overline{\mathrm{AM}} = \overline{\mathrm{BM}}$ 은 결론이다.

- 11. 다음 그림과 같이 반지름의 길이가 $8 \, \mathrm{cm}$ 인 원 위의 점 P 를 중심 O 에 닿도록 접었을 때 생기는 현 AB 의 길이는? $\bigcirc 6\sqrt{3}\,\mathrm{cm}$
 - ① $5\sqrt{3}$ cm
- $37\sqrt{3}$ cm $\bigcirc 9\sqrt{3}\,\mathrm{cm}$
- $48\sqrt{3}\,\mathrm{cm}$

해설

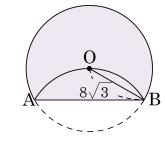
 $\overline{AM} = \overline{BM}$

$$= \sqrt{\overline{OA}^2 - \overline{OM}^2}$$

$$= \sqrt{8^2 - 4^2}$$

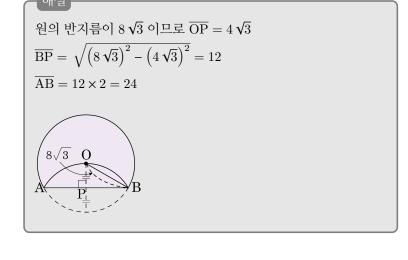
$$= \sqrt{64 - 16}$$

 $=\sqrt{48}=4\sqrt{3}$ (cm) 이다.


따라서
$$\overline{AB} = 2\overline{AM} = 8\sqrt{3}$$
(cm) 이다.

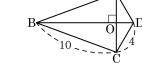
- 12. 다음 그림과 같이 지름의 길이가 30 인 원 O 에서 \overline{AB} $\bot\overline{CM}$, $\overline{CM}=6$ 일 때, 현 AB의 길이는?
 - \mathbf{C} \mathbf{M} 30 O
 - ① 12 ② 16

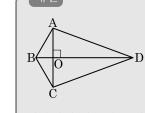
해설


- ③ 24 ④ 34
- **⑤** 36

 $\overline{\mathrm{OB}} = 15, \overline{\mathrm{OM}} = 9$ 이므로 $\triangle OBM$ 에서 $\overline{BM} = \sqrt{15^2 - 9^2} = 12$ $\overline{\mathrm{BM}} = \overline{\mathrm{AM}}$ 이므로 $\overline{\mathrm{AB}} = 2 \times 12 = 24$ 이다. 30 13. 다음 그림에서 반지름의 길이가 $8\sqrt{3} {
m cm}$ 인 원 O 에서 호가 원의 중 심을 지나도록 $\overline{
m AB}$ 을 접는 선으로 하여 접었을 때, $\overline{
m AB}$ 의 길이를 구하여라.

⑤ 26

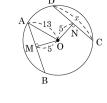

① $12\sqrt{2}$ ② $12\sqrt{3}$ ③ $24\sqrt{3}$ ④ 24



14. 다음 그림의 $\square ABCD$ 에서 $\overline{AC} \bot \overline{BD}$ 일 때, $\overline{AB}^2 - \overline{AD}^2$ 의 값은?

② 36 ① 6

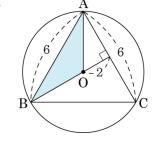
384 **4** 64



대각선이 직교하는 사각형에서는 다음 관계가 성립한다. $\overline{AB}^2+\overline{CD}^2=\overline{BC}^2+\overline{DA}^2$ $\therefore \overline{AB}^2+4^2=10^2+\overline{AD}^2$ $\therefore \overline{AB}^2-\overline{AD}^2=100-16=84$

3 54

15. 다음 그림과 같은 원 O에서 $\overline{\mathrm{OM}} = \overline{\mathrm{ON}}$ 일 때, x의 값을 구하여라.

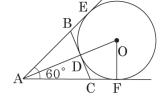

➢ 정답: 24

▶ 답:

 $\overline{AM} = \sqrt{13^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12 \text{ ord.}$

따라서 $\overline{AB}=2\times 12=24$ 이다. $\overline{OM}=\overline{ON}=5$ 이므로 $\overline{AB}=\overline{CD}=24$ 이다.

16. 다음 그림에서 $\triangle ABC$ 가 $\overline{AB} = \overline{BC}$ 인 이등변삼각형일 때, △ABO 의 넓이는?

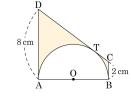


① 3 ② $3\sqrt{2}$ ③ 6 ④ $6\sqrt{2}$

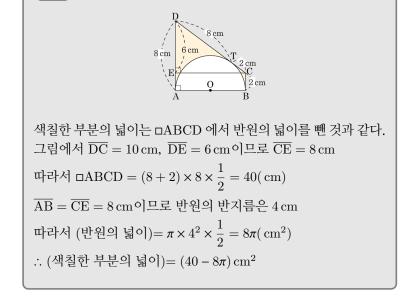
⑤ 12

원의 중심 O와 \overline{AB} 사이의 거리는 원의 중심 O와 \overline{AC} 사이의 거리인 2 와 같다. $\therefore \triangle ABO = \frac{1}{2} \times 6 \times 2 = 6$

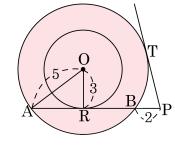
17. 다음 그림에서 점 D, E, F 는 각각 원 O 와 $\triangle ABC$ 의 \overline{BC} , 그리고 \overline{AB} , \overline{AC} 의 연장선과의 교점이고, 원의 반지름이 $2\sqrt{3}$ 일 때, $\triangle ABC$ 의 둘레의 길이는?



해설

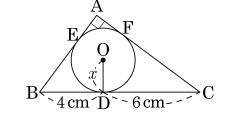

① $2\sqrt{3}$ ② $4\sqrt{2}$ ③ 10

 $4 \ 10\sqrt{2}$ 12


 $\overline{AF}: 2\sqrt{3} = \sqrt{3}: 1, \quad \overline{AF} = 6$ $(\triangle ABC$ 의 둘레)= $\overline{AF} + \overline{AE} =$ $2\overline{AF} = 12$ A 30° 18. 다음 그림과 같이 반원의 호 AB 위의 한 점 T 를 지나는 접선이 지름 AB 의 양 끝점에서 그은 접선과 만나는 점을 각각 D, C 라 할 때, 색칠한 부분의 넓이는?

- ① $(40 8\pi)$ cm² ② $(40 + 8\pi)$ cm² ③ $(80 8\pi)$ cm² $\textcircled{4} (40 - 4\pi) \text{cm}^2$ $\textcircled{5} (80 - 16\pi) \text{cm}^2$

19. 다음 그림과 같이 중심이 점 O이고 반지름의 길이가 각각 3,5인 두 동심원이 있다. 큰 원 밖의 한 점 P에서 큰 원과 작은 원에 접선 PT, PR을 그었을 때, PT 의 길이는?


해설

 $4 2\sqrt{5}$ ① $\sqrt{5}$ ② 3 ③ 4

⑤ 5

 $\angle ARO = 90^{\circ}$ 이므로 $\overline{AR} = \sqrt{5^2 - 3^2} = 4$, $\overline{AB} = 2 \times \overline{AR} = 8$ $\overline{PT}^2 = 2 \times (2 + 8) = 20$ $\therefore \overline{PT} = 2\sqrt{5}$

20. 다음 그림에서 점 D, E, F 는 직각삼각형 ABC 와 내접원 O 의 접점일 때, 원 O 의 넓이는?

 $4\pi \text{cm}^2$

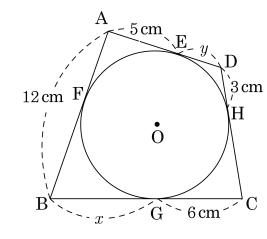
① πcm^2

해설

- ② $2\pi \text{cm}^2$ ③ $5\pi cm^2$
- $3 \pi \text{cm}^2$
- © onem

 $\overline{BD} = 4$ cm, $\overline{CD} = 6$ cm 이므로

지B = (4 + x)cm, $\overline{AC} = (6 + x)$ cm 이다. $(4 + x)^2 + (6 + x)^2 = 10^2$ $2x^2 + 20x + 52 = 100$


 $x^2 + 10x - 24 = 0$

(x-2)(x+12) = 0

따라서 x = 2 (x > 0) 이므로

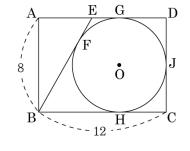
원 O 의 넓이는 $2^2\pi = 4\pi \text{ (cm}^2\text{)}$

21. 다음 그림과 같이 \square ABCD가 원 O에 외접할 때, x+y의 값은?

4 13

⑤ 14

10 2 11 ③ 12

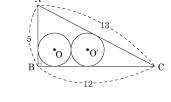

 $\overline{AF} = \overline{AE} = 5(cm)$ $\overline{\mathrm{DH}} = \overline{\mathrm{ED}} = 3(\mathrm{cm})$

해설

 $\overline{\mathrm{BF}} = \overline{\mathrm{BG}} = 7(\mathrm{cm})$

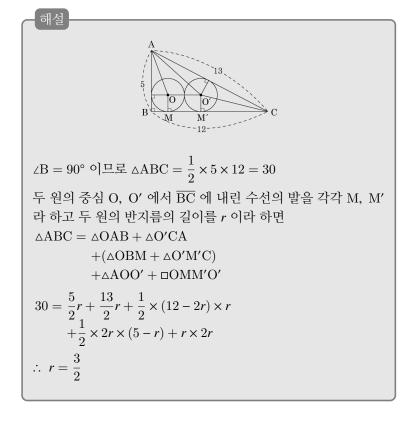
따라서 x = 7(cm), y = 3(cm)

22. 다음 그림과 같이 원 O 가 직사각 형 ABCD 의 세 변과 BE 에 접할 때, BE 의 길이를 구하여라. (단, F, G, H, J 는 접점)

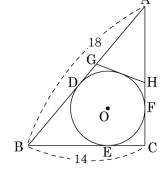

답:▷ 정답: 10

해설

 $\overline{ED} + \overline{BC} = \overline{BE} + \overline{DC}$ 이므로 $\overline{ED} + 12 = \overline{BE} + 8$ 이다. 따라 서 $\overline{ED} = \overline{BE} - 4$ 이다.


 $\overline{AE} = \overline{AD} - \overline{ED} = 12 - (\overline{BE} - 4) = 16 - \overline{BE}$ 이므로 직각삼각형 ABE 에서 $\overline{BE^2} = (16 - \overline{BE})^2 + 8^2$ 이다. 따라서 $\overline{BE} = 10$ 이다.

23. 다음 그림과 같이 세 변의 길이가 5, 12, 13 인 삼각형 ABC 에 서로 외접하는 같은 크기의 두 원 O, O' 이 내접한다. 이때, 원의 반지름의 길이를 구하여라.



답:

ightharpoonup 정답: $rac{3}{2}$

24. 다음 그림에서 원 O 는 \triangle ABC 의 내 접원이고, 세 점 D, E, F 는 접점이다. $\overline{\mathrm{AB}}=18$, $\overline{\mathrm{BC}}=14$, $\Delta\mathrm{AGH}$ 의 둘레의 길이가 20 일 때, $\overline{\mathrm{AC}}$ 의 길이는?

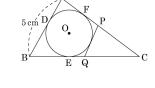
① 10

② 12

316

4 17

⑤ 18


해설 접선의 성질에 따라 $\overline{\mathrm{AD}} = \overline{\mathrm{AF}}$

 $\triangle AGH$ 의 둘레는 $\overline{AD} + \overline{AF} = 2 \times \overline{AD}$ $\Delta {
m AGH}$ 의 둘레가 20 이므로 $\overline{
m AD} = \overline{
m AF} = 10$

 $\therefore \overline{BD} = \overline{BE} = 8, \ \overline{EC} = \overline{CF} = 6$

 $\therefore \overline{AC} = \overline{AF} + \overline{CF} = 10 + 6 = 16$

25. 다음 그림과 같이 둘레의 길이가 $20 {
m cm}$ 인 삼각형 ABC 에 ${
m \ell O}$ 가 내 접해 있다. D, E, F 는 접점이고 $\overline{
m PQ}$ 는 이 원의 접선이다. $\overline{
m AB} = 5 {
m cm}$ 일 때, ${
m \Delta CPQ}$ 의 둘레의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

▷ 정답: 10cm

▶ 답:

 \overline{PQ} 와 원 O 의 접점을 R 이라 하면

 $\overline{PR}=\overline{PF},\ \overline{QR}=\overline{QE}$ 이므로 ΔCPQ 의 둘레의 길이는 $2\overline{CF}$

이다. $\overline{AF} = \overline{AD}, \ \overline{BD} = \overline{BE}$ 이므로

 $\frac{1}{2\overline{\text{CF}}}$

 $2\overline{\text{CF}} = \overline{\text{AC}} + \overline{\text{BC}} - \overline{\text{AB}}, \ 2\overline{\text{CF}} = \overline{\text{AC}} + \overline{\text{BC}} - 5$ 이때 삼각형 ABC의 둘레의 길이가 20cm 이므로

 $\overline{AC} + \overline{BC} + 5 = 20$

 $\therefore \overline{AC} + \overline{BC} = 15cm$ $\therefore 2\overline{CF} = 15 - 5 = 10cm$

따라서 ΔCPQ 의 둘레의 길이는 10cm 이다.