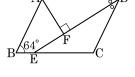
1. 다음 그림과 같이 $\angle B = 64$ ° 인 평행사변형 ABCD의 꼭짓점 A에서 ∠D의 이등분선 위 에 내린 수선의 발을 F라 할 때, ∠BAF의 크기를 구하여라.



➢ 정답: 58°

 $\angle ADF = \angle CDF = 64^{\circ} \div 2 = 32^{\circ}$

해설

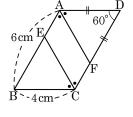
답:

 $\angle DAF = 180^{\circ} - (32^{\circ} + 90^{\circ}) = 58^{\circ}$ $\angle DAB = 180 \degree - 64 \degree = 116 \degree$ $\therefore \angle BAF = \angle DAB - \angle DAF$

=116 $^{\circ}$ -58 $^{\circ}$

 $=58\,^{\circ}$

2. 평행사변형 ABCD 에서 ∠A, ∠C 의 이등분선 이 변 AB, CD 와 만나는 점을 각각 E, F 라 고 할 때, $\overline{AB}=6\,\mathrm{cm},\,\overline{BC}=4\,\mathrm{cm},\,\angle ADC=$ 60°일 때, □AECF 의 둘레의 길이는? ② 12 cm ① $10\,\mathrm{cm}$ $3 14\,\mathrm{cm}$



 $416\,\mathrm{cm}$

⑤ 18 cm

해설

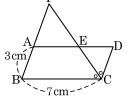
 $\triangle ADF$, $\triangle BEC$ 에서 $\overline{AD} = \overline{BC}$, $\overline{DF} = \overline{BE}$, $\angle EBC = \angle ADF$ 이므로 SAS 합동이고 □AECF 는 평행사변형이다. $\angle ADF = 60$ °, $\angle BAD = 120$ °, $\angle FAD = 60$ °이므로, $\angle AFD =$

60°이므로 \triangle ADF, \triangle BEC 는 정삼각형이다.

 $\overline{AE} = \overline{AB} - \overline{BE} = 6 - 4 = 2$ (cm) 이다. 그러므로 평행사변형 AECF 의 둘레는

 $\overline{AE} + \overline{EC} + \overline{CF} + \overline{AF} = 2 + 4 + 2 + 4 = 12$ (cm) 이다.

3. 다음 그림과 같은 평행사변형 ABCD 에서 ∠C 의 이등분선이 ĀD 와 BA 의 연장선 과 만나는 점을 각각 E,F 라 하자. ĀB = 3 cm, BC = 7 cm 일 때, ĀF 의 길이를 구하 3 c 여라.



정답: 4 cm

▶ 답:

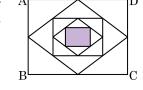
해설

 $\overline{\mathrm{BF}}//\overline{\mathrm{CD}}$ 이므로 $\angle\mathrm{AFE}=\angle\mathrm{ECD}$ (엇각) $\Delta\mathrm{FBC}$ 에서 $\angle\mathrm{BFC}=\angle\mathrm{BCF}$ 이므로 $\Delta\mathrm{FBC}$ 는 $\overline{\mathrm{BF}}=\overline{\mathrm{BC}}$ 인

이등변삼각형이다. 따라서 $\overline{BF} = \overline{BC} = 7(\,\mathrm{cm})$ 이므로 $\overline{AF} = \overline{BF} - \overline{AB} = 7 - 3 = 4(\,\mathrm{cm})$

 $\underline{\mathrm{cm}}$

다음 그림은 직사각형 ABCD 를 시작으로 4. 계속하여 각 변의 중점을 연결한 도형이다. 색칠된 부분의 넓이가 10 일 때, □ABCD 의 넓이를 구하여라.



▶ 답: ▷ 정답: 160

각 변의 중점을 연결하여 만든 도형의 넓이는 처음 도형의 $\frac{1}{2}$ 이므로 □ABCD 의 넓이를 *x* 라 하면

 $x \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 10$ $\therefore x = 160$

- 5. 다음 중 평행사변형이 직사각형이 되는 조건으로 옳은 것을 모두 고르면? (정답 2개)
 - ① 두 대각선이 서로 수직으로 만난다. ②한 내각이 직각이다.

 - ③ 두 대각선이 서로 다른 것을 이등분한다.
 - ④ 두 대각선의 길이가 같다. ⑤ 두 대각의 크기가 같다.

평행사변형에서 한 내각이 직각이고, 두 대각선의 길이가 같으면

해설

직사각형이 된다.

6. 다음 보기 중에서 평행사변형이 직사각형이 되기 위한 조건을 모두 몇 개인가?

보기 :

- ⊙ 이웃하는 두 변의 길이가 같다. © 이웃하는 두 각의 크기가 같다.
- © 한 내각의 크기가 90°이다.
- ② 두 대각선은 서로 다른 것을 이등분한다. ◎ 두 대각선의 길이가 같다.

① 1 개 ② 2 개

③33개 ④4개 ⑤5개

⊙ 마름모가 될 조건

해설

- ⑥ 직사각형이 될 조건
- ◎ 직사각형이 될 조건 ◉ 평행사변형이 될 조건
- ◎ 직사각형이 될 조건
- ∴ ⓒ, ⓒ, ◉의 3개

- 7. 다음 평행사변형 중 직사각형이 될 수 있는 것은?
 - ① 두 대각선이 직교한다.
 - ② 두 대각선이 서로 다른 것을 이등분한다. ③ 한 쌍의 대변의 길이가 같다.

 - ④ 이웃하는 두 내각의 크기가 같다. ⑤ 이웃하는 두 변의 길이가 같다.

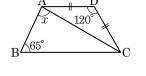
직사각형의 성질은 '네 내각의 크기가 같다.'이다.

- 8. 다음 중 평행사변형이 직사각형이 되는 조건은?
 - ① 이웃하는 두 변의 길이가 같다. ② 한 내각의 크기가 직각이다.
 - 선 네쉬의 크기가 작각이다
 - ③ 두 대각선이 서로 다른 것을 이등분한다.
 - ④ 두 쌍의 대변의 길이가 각각 같다.
 - ⑤ 두 대각선이 수직으로 만난다.

평행사변형의 이웃하는 두 각의 크기의 합이 180° 이므로 한

내각이 90° 임을 증명할 수 있다.

9. 다음 그림은 \overline{AD} $//\overline{BC}$ 인 사다리꼴이다. $\overline{AD}=\overline{DC}$ 이고, $\angle ABC=65^\circ$, $\angle ADC=120^\circ$ 일 때, $\angle x$ 의 값을 구하여라.



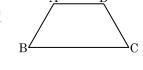
답:

➢ 정답: 85

삼각형 ADC 는 이등변삼각형이므로

∠DAC = ∠DCA = 30° ∠BCA = 30° (∠DAC 와 엇각관계) 그러므로 ∠x + 65° + 30° = 180° ∴ ∠x = 85

10. 다음 그림은 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴이다. $\overline{AB} = \overline{AD} = \overline{CD}$ 이고, $\overline{AD} = \frac{1}{2}\overline{BC}$ 일때, $\angle B$ 의 크기를 구하여라.



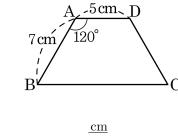
▶ 답: ▷ 정답: 60_°

 $\overline{
m DC}$ 에 평행하게 $\overline{
m AE}$ 를 그으면 m DAECD

는 평행사변형이 되고, $\overline{\mathrm{AD}} = \frac{1}{2}\overline{\mathrm{BC}}$ 이 므로 점 $E \leftarrow \overline{BC}$ 의 중점에 위치하게 된 B^4 다. 그러므로 $\overline{AB} = \overline{BE} = \overline{AE}$ 이므로

△ABE 는 정삼각형이 된다. ∴ ∠B = 60°

11. 다음 그림의 $\square ABCD$ 는 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴이다. $\overline{AB}=7\mathrm{cm},$ $\overline{\mathrm{AD}} = 5\mathrm{cm}$, $\angle \mathrm{A} = 120\,^{\circ}$ 일 때, $\Box \mathrm{ABCD}$ 의 둘레의 길이를 구하여라.



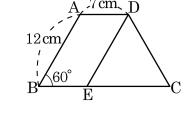
 ▶ 정답:
 31 cm

답:

해설

 $\angle A + \angle B = 180$ °이므로 $\angle B = 60$ °이다. D 를 지나고 $\overline{\mathrm{AB}}$ 와 평행한 직선이 $\overline{\mathrm{BC}}$ 와 만나는 점을 E 라 하자. A_5cm_D $7 \text{cm} / 120^{\circ}$ $\overline{
m AD}\,/\!/\,\overline{
m BE},\,\overline{
m AB}\,/\!/\,\overline{
m DE}$ 이므로 $\Box
m ABED$ 는 평행사변형이다. $\overline{\mathrm{AD}} = \overline{\mathrm{BE}} = 5\mathrm{cm}, \ \overline{\mathrm{AB}} = \overline{\mathrm{DE}} = 7\mathrm{cm}$ 이고 동위각이므로 $\angle ABE = \angle DEC = 60$ °이다. $\Delta {
m DEC}$ 는 $\overline{
m DE}$ = $\overline{
m DC}$ = $7{
m cm}$ 에서 이등변삼각형임을 알 수 있고 밑각이 60°이므로 세 내각의 크기가 모두 같은 정삼각형이 된다. $\overline{\mathrm{DC}} = \overline{\mathrm{CE}} = \overline{\mathrm{ED}} = 7\mathrm{cm}$ $\therefore \overline{\mathrm{BC}} = \overline{\mathrm{BE}} + \overline{\mathrm{EC}} = 5 + 7 = 12 (\mathrm{cm})$ 따라서 □ABCD의 둘레의 길이는 5 + 7 + 7 + 12 = 31 (cm)

12. 다음 그림의 $\square ABCD$ 는 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴이다. \overline{AB} $//\overline{DE}$ 일 때, $\overline{\mathrm{BC}}$ 의 길이는?



① 16 ② 17 ③ 18

⑤ 20

 $\overline{\mathrm{AB}}\,/\!/\,\overline{\mathrm{DE}}\,$ 이므로 $\angle\mathrm{ABE}=\angle\mathrm{DEC}=60\,^{\circ}$ 이고,

 $\square ABCD$ 는 등변사다리꼴이므로 $\angle ABE = \angle DCE = 60\,^{\circ}$ 이다. 따라서 ΔDEC는 정삼각형이다. $\overline{\mathrm{EC}} = \overline{\mathrm{AB}} = 12$ 이므로 $\overline{\mathrm{BC}} = 7 + 12 = 19 \mathrm{(cm)}$ 이다.

13. 다음 보기의 사각형 중에서 두 대각선이 서로 다른 것을 이등분하는 것을 모두 몇 개인가?

 보기

 ① 등변사다리꼴
 ⑤ 평행사변형

 ⑥ 직사각형
 @ 마름모

 ⑥ 정사각형
 ⑥ 사다리꼴

① 2개 ② 3개 ③ 4개 ④ 5개 ⑤ 6개

평행사변형은 두 대각선이 서로 다른 것을 이등분한다. 직사

해설

각형, 마름모, 정사각형은 평행사변형의 성질을 가지므로 위의 성질도 가진다. 따라서 ①, ②, ②, ② 총 4 개이다.

14. 다음 조건에 알맞은 사각형을 모두 구하면?

대각선이 서로 다른 것을 수직이등분한다.

- ① 마름모, 정사각형 ② 평행사변형, 마름모
- ③ 직사각형, 마름모, 정사각형
- ④ 등변사다리꼴, 직사각형, 정사각형
- ⑤ 평행사변형, 등변사다리꼴, 마름모, 정사각형

두 대각선이 서로 다른 것을 수직이등분하는 사각형은 마름모,

해설

정사각형이다.

15. 다음 보기의 조건에 알맞은 사각형은?

두 대각선의 길이가 같고 서로 다른 것을 수직이등분한다.

 ④ 평행사변형
 ⑤ 마름모

해설

③ 정사각형 ② 등변사다리꼴 ③ 직사각형

0 11

두 대각선의 길이가 서로 같고 서로 다른 것을 수직이등분하는

도형은 정사각형이다.

16. 다음 조건에 알맞은 사각형을 모두 구하면?

대각선이 서로 다른 것을 이등분한다.

- ① 평행사변형, 등변사다리꼴, 마름모, 정사각형② 등변사다리꼴, 평행사변형, 마름모
- ③ 평행사변형, 직사각형, 마름모, 정사각형
- ④ 등변사다리꼴, 직사각형, 정사각형
- ⑤ 마름모, 정사각형

평행사변형은 두 대각선이 서로 다른 것을 이등분한다. 직사

해설

각형, 마름모, 정사각형은 평행사변형의 성질을 가지므로 위의 성질도 가진다.