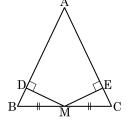
1. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 \overline{ABC} 에서 \overline{BC} 의 중점을 M 이라 하자. 점 M 에서 $\overline{AB}, \overline{AC}$ 에 내린 수선의 발을 각각 D, E 라 할 때, $\overline{MD} = \overline{ME}$ 임을 나타내는 과정에서 필요한 조건이 <u>아닌</u> 것은?



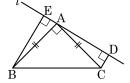
 $\overline{\text{3}}\overline{\text{BD}} = \overline{\text{CE}}$

① $\overline{\mathrm{BM}} = \overline{\mathrm{CM}}$

- ② $\angle B = \angle C$ ④ $\angle BDM = \angle CEM$
- ⑤ RHA 합동

 ΔBMD 와 ΔCME 에서 $\angle B=\angle C$, $\angle BDM=\angle CEM=90$ ° , $\overline{BM}=\overline{MC}$ ∴ $\Delta BMD\equiv\Delta CME$ (RHA 합동)

 ${f 2}$. 그림과 같이 직각이등변삼각형 ABC 의 직각인 꼭짓점 A 를 지나는 직선 l 에 점 B,C 에서 각 각 내린 수선의 발을 E,D 라 하자. $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 이고, $\overline{\mathrm{BE}}=4,\;\overline{\mathrm{CD}}=1$ 일 때, $\overline{\mathrm{ED}}$ 를 구하 여라.



▶ 답: ▷ 정답: 5

△BAE 와 △ACD 에서 $\overline{AB} = \overline{AC} \cdots \bigcirc$

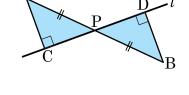
 $\angle AEB = \angle ADC = 90^{\circ} \cdots \bigcirc$

 $\angle EAB + \angle CAD = 90$ ° 이므로 $\angle \mathrm{EAB} = \angle \mathrm{ACD} \cdots \textcircled{\boxtimes}$

따라서 ①, ⓒ, ⓒ에 의해서 $\triangle BAE \equiv \triangle ACD$

 $\overline{\mathrm{BE}}=\overline{\mathrm{AD}}=4,\;\overline{\mathrm{CD}}=\overline{\mathrm{AE}}=1$ 이 성립하므로 $\overline{\mathrm{ED}}=5$

3. 다음 그림과 같이 선분 AB의 양 끝점 A,B에서 \overline{AB} 의 중점 P를 지나는 직선 l에 내린 수선의 발을 각각 C,D라 하자. 다음은 ΔACP 와 ΔBDP 가 합동임을 나타내는 과정이다. 안에 알맞은 것을 차례대로 써넣어라.



△ACP와 △BDP에서
$\angle ACP = \boxed{} = 90^{\circ}, \overline{AP} = \boxed{}$
$\angle APC = \square$
∴ △ACP ≡ △BDP(합동)

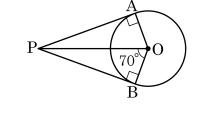
▷ 정답: ∠BDP, BP, ∠BPD, RHA

▶ 답:

해설

△ACP 와 △BDP 에서
∠ACP = ∠BDP = 90°, $\overline{AP} = \overline{BP}$ ∠APC = ∠BPD
∴ △ACP ≡ △BDP(RHA 합동)

4. 다음 그림에서 $\angle APB$ 의 크기는 ?



① 20° ②40° 380° 490° 5140°

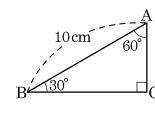
 $\triangle PAO \equiv \triangle PBO (RHA 합동)이므로$

해설

 $\angle POA = 70^{\circ}$

∴ $\angle APB = 40^{\circ}$

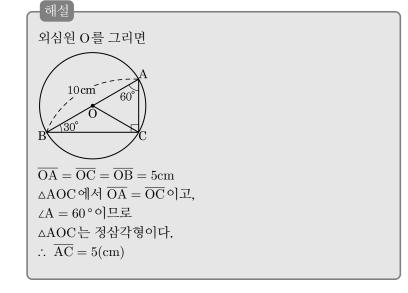
5. 다음 그림의 직각삼각형 ABC에서 $\overline{AB}=10\mathrm{cm}$ 일 때, \overline{AC} 의 길이는?



④ 6cm

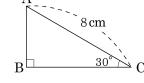
 \bigcirc 7cm

① 3cm ② 4cm ③ 5cm



6. 다음 그림과 같은 △ABC는 ∠B = 90°인 직각삼각형이다. $\overline{\mathrm{AC}}=8\,\mathrm{cm}$, $\angle\mathrm{ACB}=$ 8 cm $30\,^{\circ}$ 일 때, $\overline{\mathrm{AB}}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$



`4 cm

▶ 답: 정답: 4<u>cm</u>

해설

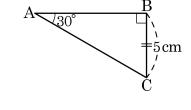
다음 그림과 같이 직각삼각형 ABC의 외심을 O라 하고 꼭짓점 B와 연결시 키면

 $\angle CAB = 90^{\circ} - 30^{\circ} = 60^{\circ}$ $\overline{\mathrm{OA}} = \overline{\mathrm{OB}}$ 이므로 $\angle\mathrm{OBA} = 60\,^{\circ}$ ΔOAB는 세 각의 크기가 같으므로 정삼각형이다.

 $\therefore \overline{AB} = 4 \, \mathrm{cm}$

따라서 $\overline{OA} = \overline{OB} = \overline{AB} = 4 \,\mathrm{cm}$

7. 다음 그림은 $\angle A=30\,^\circ$ 인 직각삼각형이다. $\overline{BC}=5\mathrm{cm}$ 일 때, 외접원 의 넓이를 구하여라.



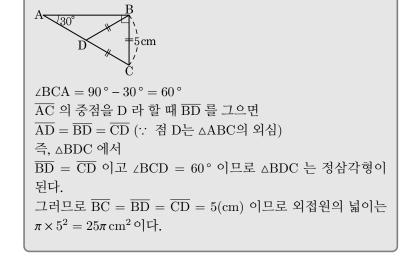
 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $25\pi \mathrm{cm}^2$

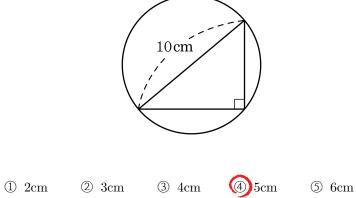
25% <u>CIII</u>

답:

해설



8. 다음 그림과 같이 빗변의 길이가 10cm 인 직각삼각형의 외접원의 반지름의 길이를 구하면?



해설

직각삼각형의 외심은 빗변의 중점에 있으므로 빗변의 중점이 외접원의 중심이 된다. (외접원의 반지름의 길이) = $\frac{(빗변의 길이)}{2} = 5(cm)$

9. 다음 보기 중에서 평행사변형이 직사각형이 되기 위한 조건을 모두 몇 개인가?

보기 :

- ⊙ 이웃하는 두 변의 길이가 같다. © 이웃하는 두 각의 크기가 같다.
- © 한 내각의 크기가 90°이다.
- ② 두 대각선은 서로 다른 것을 이등분한다.
- ◎ 두 대각선의 길이가 같다.

① 1 개 ② 2 개

③33개 ④4개 ⑤5개

⊙ 마름모가 될 조건

해설

- ⑥ 직사각형이 될 조건
- ◎ 직사각형이 될 조건 ◉ 평행사변형이 될 조건
- ◎ 직사각형이 될 조건 ∴ ⓒ, ⓒ, ◉의 3개

10. 다음 그림과 같은 □ABCD 가 평행사변형이 직사각형이 되기 위한 조건을 나타낸 것이다. □ 안에 알맞은 것을 써넣어라.

평행사변형 ABCD 가 직사각형이 되기 위해서는 $\overline{AC} = \square$ 이거나 $\angle A = \square^\circ$ 이면 된다.

답:

답:

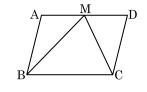
 ▷ 정답: BD

 ▷ 정답: 90

한 내각이 직각이거나 대각선의 길이가 같은 평행사변형은 직사

각형이므로 $\overline{AC} = \overline{BD}$ 이거나 $\angle A = 90$ ° 이다.

11. 다음 그림의 □ABCD 는 평행사변형이다. $\overline{\mathrm{AD}}$ 의 중점을 M 이라 하고, $\overline{\mathrm{BM}} = \overline{\mathrm{CM}}$ 일 때, □ABCD 는 어떤 사각형인가?



① 정사각형 ② 마름모 ④ 사다리꼴

⑤ 직사각형

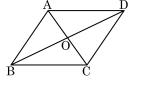
③ 평행사변형

해설

△ABM 와 △DCM 에서

 $\overline{\mathrm{AM}} = \overline{\mathrm{MD}}, \ \overline{\mathrm{AB}} = \overline{\mathrm{DC}}, \ \overline{\mathrm{BM}} = \overline{\mathrm{MC}}$ 이므로 $\triangle ABM \equiv \triangle DCM (SSS 합동)$ $\square ABCD$ 는 평행사변형 이므로 $\angle A + \angle D = 180\,^{\circ}$ $\triangle ABM \equiv \triangle DCM$ 이므로 $\angle A = \angle D = 90$ ° 평행사변의 한 내각의 크기가 ∠90°이다. ∴ □ABCD 는 직사각형

12. 다음 그림 □ABCD 는 평행사변형이라고 할 때, 직사각형이 되기 위한 조건을 나타낸 것은?

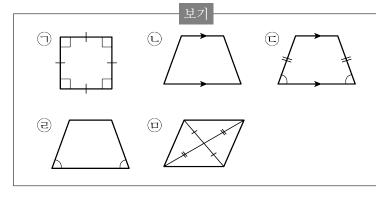


- ① $\overline{AB} = 8 \text{cm}, \ \overline{CD} = 8 \text{cm}$ ② $\angle A = \angle C = 80^{\circ}$
- $\angle 2 \ \angle A = \angle C = 80$
- $\overline{\text{BO}} = \overline{\text{DO}} = 4\text{cm}$
- $\boxed{40}$ $\overline{AO} = 5$ cm, $\overline{BO} = 5$ cm, $\overline{CO} = 5$ cm, $\overline{DO} = 5$ cm $\boxed{5}$ $\angle A + \angle B = 180$ °

한 내각이 직각이거나 두 대각선의 길이가 같은 평행사변형은

직사각형이 된다. 따라서 $\overline{AO} = \overline{BO} = \overline{CO} = \overline{DO}$ 이거나 $\angle A = 90$ ° 이면 된다.

13. 다음 중 등변사다리꼴인 것은?



⑤ ⑤, ⑥

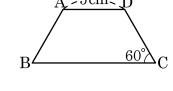
등변사다리꼴은 밑각의 크기가 같은 사다리꼴이다.

해설

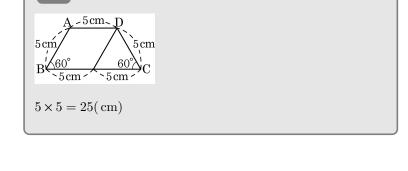
© 사다리꼴이다. ◎ 사다리꼴이라는 조건이 나타나 있지 않다.

- ◎ 두 대각선의 길이가 같지 않으므로 등변사다리꼴이 아니다.

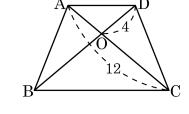
14. 다음 그림에서 $\square ABCD$ 는 $\overline{AB}=\overline{AD}$ 인 등변사다리꼴이다. $\overline{AD}=5~\mathrm{cm}$, $\angle C=60^\circ$ 일 때, $\square ABCD$ 의 둘레의 길이를 구하여라.



답:▷ 정답: 25 cm



15. 다음 그림에서 $\Box ABCD$ 가 등변사다리꼴이고 $\overline{AC}=12,\ \overline{DO}=4$ 일 때, \overline{BO} 의 길이를 구하여라.



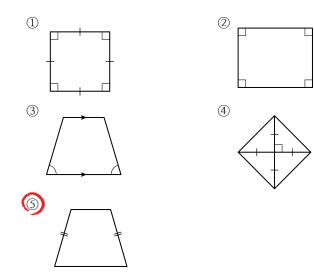
답:▷ 정답: 8

• --

등변사다리꼴은 두 대각선의 길이가 서로 같으므로 $\overline{\mathrm{BD}} = \overline{\mathrm{AC}} =$

12이다. ∴ BO = 12 - 4 = 8이다.

16. 다음 중 등변사다리꼴이 <u>아닌</u> 것은?



등변사다리꼴은 밑각의 크기가 같은 사다리꼴이다. ⑤ 사다리꼴이라는 조건이 나타나 있지 않다.