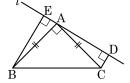

1. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 \overline{ABC} 에서 \overline{BC} 의 중점을 M 이라 하자. 점 M 에서 $\overline{AB}, \overline{AC}$ 에 내린 수선의 발을 각각 D, E 라 할 때, $\overline{MD} = \overline{ME}$ 임을 나타내는 과정에서 필요한 조건이 <u>아닌</u> 것은?


 $\overline{\text{3}}\overline{\text{BD}} = \overline{\text{CE}}$

① $\overline{\mathrm{BM}} = \overline{\mathrm{CM}}$

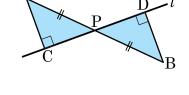
- ② $\angle B = \angle C$ ④ $\angle BDM = \angle CEM$
- ⑤ RHA 합동

 ΔBMD 와 ΔCME 에서 $\angle B=\angle C$, $\angle BDM=\angle CEM=90$ ° , $\overline{BM}=\overline{MC}$ ∴ $\Delta BMD\equiv\Delta CME$ (RHA 합동)

 ${f 2}$. 그림과 같이 직각이등변삼각형 ABC 의 직각인 꼭짓점 A 를 지나는 직선 l 에 점 B,C 에서 각 각 내린 수선의 발을 E,D 라 하자. $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 이고, $\overline{\mathrm{BE}}=4,\;\overline{\mathrm{CD}}=1$ 일 때, $\overline{\mathrm{ED}}$ 를 구하 여라.

▶ 답: ▷ 정답: 5

△BAE 와 △ACD 에서 $\overline{AB} = \overline{AC} \cdots \bigcirc$


 $\angle AEB = \angle ADC = 90^{\circ} \cdots \bigcirc$

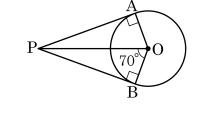
 $\angle EAB + \angle CAD = 90$ ° 이므로 $\angle \mathrm{EAB} = \angle \mathrm{ACD} \cdots \textcircled{\boxtimes}$

따라서 ①, ⓒ, ⓒ에 의해서 $\triangle BAE \equiv \triangle ACD$

 $\overline{\mathrm{BE}}=\overline{\mathrm{AD}}=4,\;\overline{\mathrm{CD}}=\overline{\mathrm{AE}}=1$ 이 성립하므로 $\overline{\mathrm{ED}}=5$

3. 다음 그림과 같이 선분 AB의 양 끝점 A,B에서 \overline{AB} 의 중점 P를 지나는 직선 l에 내린 수선의 발을 각각 C,D라 하자. 다음은 ΔACP 와 ΔBDP 가 합동임을 나타내는 과정이다. 안에 알맞은 것을 차례대로 써넣어라.

△ACP와 △BDP에서
$\angle ACP = \boxed{} = 90^{\circ}, \overline{AP} = \boxed{}$
$\angle APC = \square$
∴ △ACP ≡ △BDP(합동)


▷ 정답: ∠BDP, BP, ∠BPD, RHA

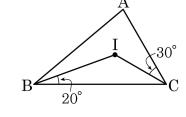
▶ 답:

해설

△ACP 와 △BDP 에서
∠ACP = ∠BDP = 90°, $\overline{AP} = \overline{BP}$ ∠APC = ∠BPD
∴ △ACP ≡ △BDP(RHA 합동)

4. 다음 그림에서 $\angle APB$ 의 크기는 ?

① 20° ②40° 380° 490° 5140°


 $\triangle PAO \equiv \triangle PBO (RHA 합동)이므로$

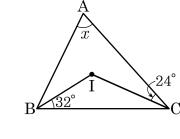
해설

 $\angle POA = 70^{\circ}$

∴ $\angle APB = 40^{\circ}$

다음 그림에서 점 I는 \triangle ABC의 내심이다. \angle IBC = $20\,^{\circ}$, \angle ACI = $30\,^{\circ}$ **5.** 일 때, $\angle A=($) °의 크기는 얼마인지 구하여라.

▶ 답: ▷ 정답: 80


점 I가 \triangle ABC의 내심일 때, \angle BIC = $90\,^{\circ} + \frac{1}{2}\angle$ A 이다. 점 I가 세 내각의 이등분선의 교점이므로 $\angle ACI = \angle ICB = 30^\circ$

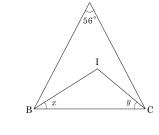
삼각형의 내각의 합은 180°이므로 ∠BIC = 180°-20°-30°= 130°이다.

 $\angle BIC = 90^{\circ} + \frac{1}{2} \angle A,$

 $130^{\circ} = 90^{\circ} + \frac{1}{2} \angle A$ ∴ ∠A = 80°

다음 그림에서 점 I는 \triangle ABC의 내심이다. $\angle x$ 의 값을 구하여라. **6.**

▷ 정답: 68_°

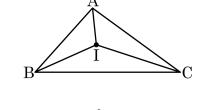

▶ 답:

점 I가 \triangle ABC의 내심일 때, \angle BIC = $90^{\circ} + \frac{1}{2} \angle$ A 이다. 점 I가 세 내각의 이등분선의 교점이므로 $\angle ACI = \angle ICB = 24^\circ$

삼각형의 내각의 합은 180°이므로 ∠BIC = 180° – 32° – 24° = 124°이다.

 $\angle BIC = 90^{\circ} + \frac{1}{2} \angle A, 124^{\circ} = 90^{\circ} + \frac{1}{2} \angle A$ ∴ ∠A = 68°

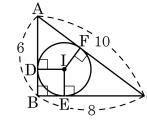
7. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이다. $\angle x + \angle y$ 의 크기를 구하여라.



 □
 답:

 □
 정답:
 62 °

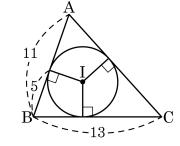
 $\angle BIC = 90^{\circ} + \frac{1}{2} \angle A$ $= 90^{\circ} + 28^{\circ} = 118^{\circ}$ $\angle x + \angle y = 180^{\circ} - 118^{\circ} = 62^{\circ}$


다음 그림에서 점 I는 △ABC의 내심이다. ∠AIB : ∠BIC : ∠AIC = 6 : 8. 7 : 7일 때, ∠ACB 의 크기를 구하여라.

▶ 답: ▷ 정답: 36_°

 $\angle AIB : \angle BIC : \angle AIC = 6 : 7 : 7 이므로, \angle AIB = 360 ° \times \frac{6}{20} =$ 108 °이다. $\angle {\rm AIB} = 90\,^{\circ} + rac{1}{2} \angle {\rm ACB} = 108\,^{\circ}$ 에서 $\angle {\rm ACB} = 36\,^{\circ}$ 이다.

9. 다음 그림에서 원 I 는 직각삼각형 ABC 의 내접원이고, 점 D, E, F 는 각각 접점이다. 이 때, 내접원 I 의 반지름의 길이는? (단, $\overline{AB}=6$, $\overline{BC}=8$, $\overline{AC}=10$)

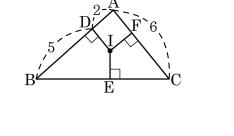


① 1 ② 1.5

4 2.5 **5** 3

내접원의 반지름의 길이를 r이라 하면 $\Delta {\rm ABI} + \Delta {\rm BCI} + \Delta {\rm ACI} = \frac{1}{2} \times 8 \times 6 = 24 \; ,$ $\frac{1}{2}\times(6+8+10)\times r=24\mathrel{\dot{.}.} r=2$

10. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이다. \overline{AC} 의 길이는?



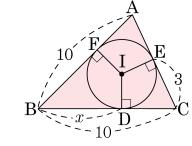
➢ 정답: 14

▶ 답:

 $\overline{AC} = (11 - 5) + (13 - 5) = 14$

11. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이다. \overline{BC} 의 길이는?

① 6 ② 7 ③ 8


⑤ 10

 $\overline{\mathrm{AD}} = \overline{\mathrm{AF}} = 2$ 이코, $\overline{\mathrm{BD}} = \overline{\mathrm{BE}} = 5$ 이다.

 $\overline{\text{CE}} = \overline{\text{AC}} - \overline{\text{AF}} = 6 - 2 = 4$ 이므로

 $\overline{BC} = \overline{BE} + \overline{EC} = 9$

12. 다음 그림에서 점 I 는 \triangle ABC 의 내심이다. x 의 값을 구하여라.

답:▷ 정답: 7

점 I가 $\triangle ABC$ 의 내심이므로 $\overline{CE} = \overline{CD} = 3$ 이다.

 $\overline{BC} = \overline{BD} + \overline{CD} = x + 3 = 10$ $\therefore x = \overline{BD} = 7$