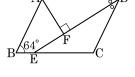
1. 다음 그림과 같이 $\angle B = 64$ °인 평행사변형 ABCD의 꼭짓점 A에서 ∠D의 이등분선 위 에 내린 수선의 발을 F라 할 때, ∠BAF의 크기를 구하여라.



➢ 정답: 58°

 $\angle ADF = \angle CDF = 64^{\circ} \div 2 = 32^{\circ}$

해설

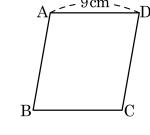
답:

 $\angle DAF = 180^{\circ} - (32^{\circ} + 90^{\circ}) = 58^{\circ}$ $\angle DAB = 180 \degree - 64 \degree = 116 \degree$ $\therefore \angle BAF = \angle DAB - \angle DAF$

=116 $^{\circ}$ -58 $^{\circ}$

 $=58\,^{\circ}$

2. 다음 평행사변형의 둘레의 길이가 $38\mathrm{cm}$ 이다. $\overline{\mathrm{AD}}=9\mathrm{cm}$ 일 때, $\overline{\mathrm{AB}}$ 의 길이를 구하여라.

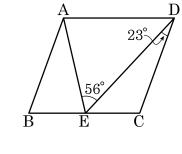


① 6cm ② 8cm ③ 10cm ④ 12cm ⑤ 14cm

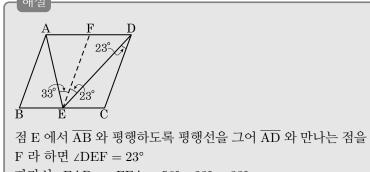
해설

 $\overline{AB} = 38 \div 2 - 9 = 10 \text{(cm)}$

3. 평행사변형 ABCD 가 다음 그림과 같이 주어졌을 때, ∠BAE 의 크기를 구하면?

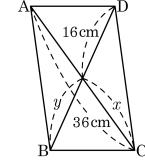


① 23° ② 25° ③ 28° ④ 33° ⑤ 35°



따라서 ∠EAB = ∠FEA = 56° - 23° = 33°

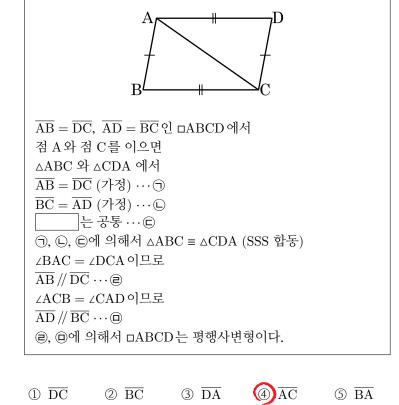
4. 다음 그림과 같은 평행사변형 ABCD 에서 x,y 의 값을 차례로 구한 것은?



- ① 36cm, 16cm ④ 36cm, 32cm
- ② 18cm, 16cm ⑤ 16cm, 18cm
- ③ 16cm, 36cm

 $x = 36 \div 2 = 18$ (cm)

5. 다음은 '두 쌍의 대변의 길이가 각각 같은 사각형은 평행사변형이다.' 를 증명하는 과정이다. □ 안에 들어갈 알맞은 것은?



 $\odot \overline{BA}$

AC는 공통

해설

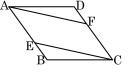
- 6. 다음 사각형 ABCD 중에서 평행사변형인 것은?
 - ① $\overline{AB}=5 cm$, $\overline{BC}=5 cm$, $\overline{CD}=5 cm$ ② $\angle A=100^\circ, \angle B=80^\circ, \ \angle C=8^\circ$

 - ③ $\overline{OA} = 4 \text{cm}$, $\overline{OB} = 6 \text{cm}$, $\overline{OC} = 6 \text{cm}$, $\overline{OD} = 4 \text{cm}$ (단, 점O 는 두 대각선의 교점) ④ $\overline{AB} \bot \overline{AD}$, $\overline{BC} \bot \overline{CD}$
 - $\boxed{\color{blue}\widehat{\textbf{D}}\overline{\textbf{A}}\overline{\textbf{B}}//\overline{\textbf{D}}\overline{\textbf{C}}}$, $\overline{\textbf{A}}\overline{\textbf{B}}=3\text{cm}$, $\overline{\textbf{D}}\overline{\textbf{C}}=3\text{cm}$

평행사변형은 한 쌍이 평행하고 그 변의 길이가 같다.

해설

 $\stackrel{ extstyle e$



답:

▷ 정답: 평행사변형

한 쌍의 대변이 평행하고 그 길이가 같다.

- 8. 다음은 평행사변형 ABCD 의 각 변의 중점을 각각 E, F, G, H 라 하고 \overline{AF} 와 \overline{CE} 의 교점 을 P , \overline{AG} 와 \overline{CH} 의 교점을 Q 라 할 때, 다음 중 □APCQ 가 평행사변형이 되는 조건으로 가장 알맞은 것은?

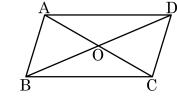
 - ① $\overline{AE} = \overline{EB}$, $\overline{AD}//\overline{CB}$ $\ \ \ \overline{\mathrm{AB}}//\overline{\mathrm{DC}}$, $\overline{\mathrm{AQ}}=\overline{\mathrm{PC}}$
- $\ensuremath{\, \bigcirc \hspace{0.75pt} \overline{\mathrm{AF}}} = \overline{\mathrm{CH}}$, $\overline{\mathrm{AH}}//\overline{\mathrm{FC}}$ $\overline{\text{AP}}//\overline{\text{QC}}$, $\overline{\text{AQ}}//\overline{\text{PC}}$
- $\ensuremath{\,\bar{}}\ens$

 $\overline{\mathrm{AE}}//\overline{\mathrm{CG}},\ \overline{\mathrm{AE}}=\overline{\mathrm{CG}}$ 이므로

해설

□AECG 는 평행사변형 $\therefore \overline{\mathrm{AG}}//\overline{\mathrm{EC}}$, 즉 $\overline{\mathrm{AQ}}//\overline{\mathrm{PC}}\cdots$ ① $\overline{\mathrm{AH}}//\overline{\mathrm{FC}}, \ \overline{\mathrm{AH}} = \overline{\mathrm{FC}}$ 이므로 □AFCH 는 평행사변형 $\therefore \overline{\rm AF}//\overline{\rm CH}$, 즉 $\overline{\rm AP}//\overline{\rm QC}$ …② 따라서 두 쌍의 대변이 각각 평행하므로 $\square APCQ$ 는 평행사변 형이다.

9. 평행사변형 ABCD에서 $\triangle AOB = 4$ 일 때, $\Box ABCD$ 의 넓이를 구여라?



 ► 답:

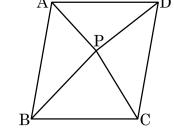
 ▷ 정답:
 16

•

해설

□ABCD = 4 × 4 = 16 이다.

 ${f 10}$. 다음 그림과 같은 평행사변형 ${f ABCD}$ 의 내부에 임의의 한 점 ${f P}$ 를 잡았다고 한다. $\Delta PAD=18 cm^2,~\Delta PBC=36 cm^2$ 일 때, $\Delta PAB+$ $\Delta PCD = ($)cm 2 이다. 빈칸을 채워넣어라.



▶ 답:

▷ 정답: 54

내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD = $\triangle PAD + \triangle PBC$ 이다. $\triangle PAD = 18cm^2$, $\triangle PBC = 36cm^2$ 이므로

 $18 + 36 = \triangle PAB + \triangle PCD$ 이다.

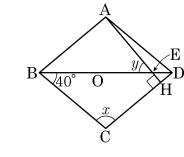
따라서 $\triangle PAB + \triangle PCD = 54(cm^2)$ 이다.

- 11. 다음 중 평행사변형이 직사각형이 되는 조건으로 옳은 것을 모두 고르면? (정답 2개)
 - ① 두 대각선이 서로 수직으로 만난다.
 - ②한 내각이 직각이다.
 - ③ 두 대각선이 서로 다른 것을 이등분한다.
 - ④ 두 대각선의 길이가 같다.⑤ 두 대각의 크기가 같다.

평행사변형에서 한 내각이 직각이고, 두 대각선의 길이가 같으면 직사각형이 된다.

해설

12. 다음 그림에서 \square ABCD 가 마름모일 때, $\angle x$ 와 $\angle y$ 의 크기는?

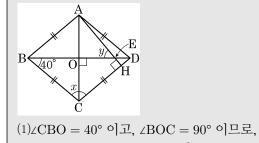


- - ③ $x = 90^{\circ}, y = 40^{\circ}$

① $x = 90^{\circ}, y = 45^{\circ}$

- ⑤ $x = 100^{\circ}, y = 40^{\circ}$
- $4x = 100^{\circ}, y = 50^{\circ}$

② $x = 95^{\circ}, y = 45^{\circ}$

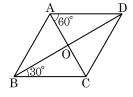


 $\angle BCO = 50^{\circ}$, $\angle x = 2 \angle BCO$ 이므로

 $\therefore \angle x = 100^{\circ}$ (2) \triangle DEH 에서 \angle EDH $=40^{\circ}$, \angle DHE $=90^{\circ}$

- 이므로, ∠DEH = 50° ∠y = ∠DEH (맞꼭지각)이므로
- $\therefore \angle y = 50^{\circ}$
- \therefore $\angle x = 100^{\circ}$, $\angle y = 50^{\circ}$ 이다.

13. 평행사변형ABCD 에서 두 대각선의 교점을 O 라 하고, $\angle \mathrm{DBC} = 30\,^{\circ}$, $\angle \mathrm{CAD} = 60\,^{\circ}$ 일 때, ∠BDC 의 크기는?



① 10° ② 20°

해설

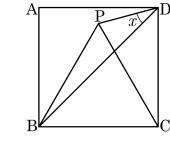
③30° 40°

⑤ 50°

 $\angle DAC = \angle ACB()$ 각)

 $\therefore \angle BOC = 90^{\circ}, \ \overline{AC} \bot \overline{BD}$ □ABCD는 마름모이다.

14. 다음 그림에서 $\square ABCD$ 는 정사각형이고, \triangle PBC 는 정삼각형일 때, $\angle x = (\)^{\circ}$ 이다. () 안에 들어갈 알맞은 수를 구하여라.



① 10° ② 15° ③ 20° ④ 25°

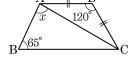
 $\angle CDB = 45^{\circ}$,

 $\angle PCD = 30^{\circ}$ 이고 $\overline{PC} = \overline{DC}$ 이므로

해설

 $\angle \text{CDP} = 75^{\circ}$, $\therefore \angle x = 75^{\circ} - 45^{\circ} = 30^{\circ}$

15. 다음 그림은 \overline{AD} $//\overline{BC}$ 인 사다리꼴이다. $\overline{AD}=\overline{DC}$ 이고, $\angle ABC=65^\circ$, $\angle ADC=120^\circ$ 일 때, $\angle x$ 의 값을 구하여라.

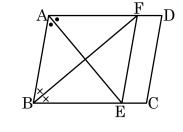


답:▷ 정답: 85

삼각형 ADC 는 이등변삼각형이므로

∠DAC = ∠DCA = 30° ∠BCA = 30° (∠DAC 와 엇각관계) 그러므로 ∠x + 65° + 30° = 180° ∴ ∠x = 85

 ${f 16}$. 다음 그림과 같은 평행사변형 ${f ABCD}$ 에서 ${\it L}{f A}$ 의 이등분선이 ${f \overline{BC}}$ 와 만나는 점을 E, $\angle B$ 의 이등분선이 \overline{AD} 와 만나는 점을 F라 할 때, □ABEF는 어떤 사각형인가?



④ 직사각형⑤ 정사각형

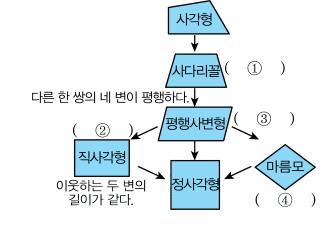
① 평행사변형 ② 사다리꼴

③마름모

해설

대각선이 내각의 이등분선인 사각형은 마름모이다.

17. 다음 괄호 안에 들어갈 알맞은 서술을 보기에서 골라 그 기호를 차례 대로 써 넣어라.(단, 같은 기호가 중복해서 나올 수 있다.)



- © 네 각이 같다.
- ⓒ 이웃하는 두 변의 길이가 같다.
- 답:
- 답:
- ▶ 답:

▶ 답:

- ▷ 정답: ①
- ▷ 정답: ⑤
- ▷ 정답:
 ©

 ▷ 정답:
 ©

여러 가지 사각형의 관계

- 평행사변형은 다음의 각 경우에 직사각형이 된다.
 한 내각의 크기가 90°일 때
- (2) 두 대각선의 길이가 같을 때2. 평행사변형은 다음의 각 경우에 마름모가 된다.
- 2. 평생자면영은 다음의 각 경우에 미(1) 이웃하는 두 변의 길이가 같을 때
- (2) 두 대각선이 서로 수직으로 만날 때
- (3) 대각선이 한 내각을 이등분 할 때

18. 다음 보기의 사각형 중에서 두 대각선이 서로 다른 것을 이등분하는 것을 모두 몇 개인가?

보기
① 등변사다리꼴
② 평행사변형
② 지사각형
② 마름모
③ 정사각형
③ 사다리꼴

① 2개 ② 3개 ③ 4개 ④ 5개 ⑤ 6개

평행사변형은 두 대각선이 서로 다른 것을 이등분한다. 직사

해설

각형, 마름모, 정사각형은 평행사변형의 성질을 가지므로 위의 성질도 가진다. 따라서 ①, ②, ②, ② 총 4 개이다. 19. 평행사변형 ABCD 가 다음 조건을 만족할 때, 어떤 사각형이 되는지 말하여라. 보기:

조건1: ∠A = 90°

조건2 : \overline{AC} 와 \overline{BD} 는 직교한다.

▶ 답:

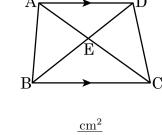
▷ 정답: 정사각형

조건 1에서 평행사변형의 한 각이 90° 이므로 다른 각도 모두

해설

90° 가 된다. 이 경우 직사각형이 된다. 조건 2 에서 두 대각선이 직교하므로 마름모가 된다. 이 조건을 모두 만족하는 도형은 정사각형이다.

 ${f 20}$. 다음 그림의 사각형 ${
m ABCD}$ 에서 ${
m \overline{AD}} /\!/\!/ {
m \overline{BC}}$ 이고, ${
m \triangle ABC}$ 의 넓이가 $15 cm^2$ 일 때, △DBC 의 넓이를 구하여라.



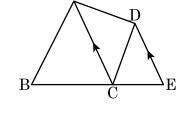
▷ 정답: 15 cm²

 ΔABC 와 ΔDBC 에서 \overline{BC} 는 동일하고 \overline{AD} 에서 \overline{BC} 까지의

▶ 답:

거리는 같으므로 ΔABC 의 넓이와 ΔDBC 의 넓이는 동일하다.

21. 다음 그림에서 \overline{AC} $/\!/ \, \overline{DE}$ 이고, $\triangle ABC$ 의 넓이가 12 이고 $\triangle ACD$ 의 넓이가 8일 때, $\triangle ABE$ 의 넓이를 구하여라.



답:▷ 정답: 20

 $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{DE}}$ 이므로 $\triangle\mathrm{ACE}=\triangle\mathrm{ACD}=8$

 $\therefore \triangle ABE = \triangle ABC + \triangle ACE = 12 + 8 = 20$

22. 다음 그림에서 $\overline{BP}:\overline{CP}=1:2,\ \triangle ABC=8\ cm^2$ 일 때, $\triangle ABP$ 의 넓이를 구하여라.

BPC

답: $\underline{\text{cm}^2}$ > 정답: $\underline{8}\underline{\text{cm}^2}$

3

 $\triangle ABP$ 와 $\triangle APC$ 의 높이는 같으므로 $\triangle ABP = 8 \times \frac{1}{3} = \frac{8}{3} \text{ (cm}^2\text{)}$

23. 다음 그림과 같은 평행사변형 ABCD에서 $\overline{AE}:\overline{DE}=2:3$ 이고 $\triangle ABE=10 {
m cm}^2$ 일 때, $\triangle EBC$ 의 넓이는?



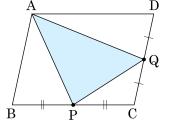
- ① 10cm² ④ 20cm²
- ② 12cm^2 ③ 25cm^2
- $3 15 \text{cm}^2$

 $\triangle ABE + \triangle DCE = \frac{1}{2} \square ABCD$

 $\triangle ABE : \triangle DCE = 2 : 3$ $\triangle DCE = 15(cm^2)$

 $\therefore \triangle EBC = \frac{1}{2} \square ABCD = 25 (cm^2)$

24. 다음과 같은 평행사변형 ABCD에서 두 점 P, Q는 각각 BC, CD의 중점이다. □ABCD = 16 cm² 일 때, △APQ의 넓이를 구하여라.



▷ 정답: 6<u>cm²</u>

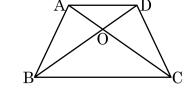
 $\underline{\mathrm{cm}^2}$

▶ 답:

 $\triangle ABP = \triangle AQD = \frac{1}{4} \square ABCD$ $= \frac{1}{4} \times 16 = 4(\text{ cm}^2)$ $\triangle PCQ = \frac{1}{8} \square ABCD = \frac{1}{8} \times 16 = 2(\text{ cm}^2)$ $\therefore \triangle APQ$ $= \square ABCD - (\triangle ABP + \triangle AQD + \triangle PCQ)$

= 16 - (4 + 4 + 2) = 16 - 10 = 6 (cm²)

 ${f 25}$. 다음 그림과 같이 ${f AD}//{f BC}$ 인 사다리꼴 ABCD 에서 $\Delta ABO=20{
m cm}^2$, $2\overline{\mathrm{DO}}=\overline{\mathrm{BO}}$ 일 때, $\Delta\mathrm{DBC}$ 의 넓이는?



- $4 70 \text{cm}^2$
- \bigcirc 50cm²
- 360cm^2
- $\odot 80 \mathrm{cm}^2$

 $\triangle AOB = \triangle COD = 20cm^2$ 또, $2\overline{\mathrm{DO}} = \overline{\mathrm{BO}}$ 이므로

∴ $\triangle BOC = 40 cm^2$ 따라서 $\triangle DBC = \triangle COD + \triangle BOC = 20 + 40 = 60 (cm^2)$