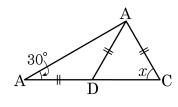
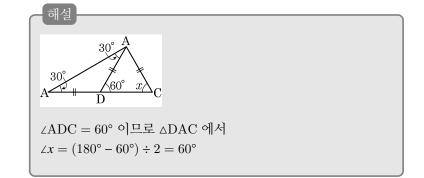
1. 다음 그림에서 $\angle x$ 의 크기를 바르게 구한 것은?





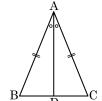
ABC에서 ∠BAD = ∠CAD일 때. 다음 중 옳지 않은 것은?

② $\angle ADB = \angle ADC$

다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형

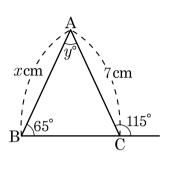
 $\triangle ADB \equiv \triangle ADC$

$$\bigcirc$$
 $\angle B = \angle C$



 \bigcirc AD \perp BC

3. 다음 그림과 같이 \triangle ABC 가 주어졌을 때, x, y의 값은?



①
$$x = 6, y = 50^{\circ}$$

②
$$x = 7, y = 45^{\circ}$$

$$3x = 7, y = 50^{\circ}$$

$$4 \quad x = 7, \ y = 65^{\circ}$$

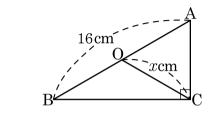
⑤
$$x = 8, y = 50^{\circ}$$

$$\angle ACB = 65$$
 ° 이므로 $\triangle ABC$ 는 이등변삼각형이다.

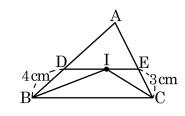
$$\therefore x = 7$$

그리고
$$y = 180$$
° -65 ° $\times 2 = 50$ °

4. 다음 그림에서 점 O는 직각삼각형 ABC의 외심이다. $\overline{AB}=16\mathrm{cm}$ 일 때, x의 길이는?

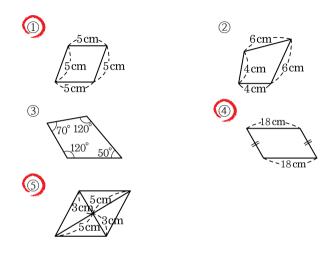


점 O가 $\triangle ABC$ 의 외심이므로 $\overline{OA} = \overline{OB} = \overline{OC}$ 이다. $\therefore x = \overline{OC} = 8(\text{cm})$ 5. $\triangle ABC$ 에서 점 I 는 내심이다. 다음 그림과 같이 \overline{DE} 는 내심을 지나면서 \overline{BC} 에 평행일 때, \overline{DI} 의 길이는?



점 I 는 내심이므로 ∠DBI = ∠CBI , ∠CBI = ∠DIB (엇각)
즉, ∠DBI = ∠DIB
따라서
$$\overline{BD} = \overline{DI} = 4 \text{ cm}$$

6. 다음 사각형 중에서 평행사변형을 모두 고르면?



- 해설
- ①, ④두 쌍의 대변의 길이가 각각 같다.
- ⑤두 대각선이 서로 다른 것을 이등분한다.

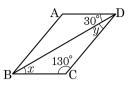
다음 평행사변형 ABCD 에서 $\overline{AD} = 2x + 5$, A = -2x + 5 - 1 $\overline{\mathrm{BC}} = 3x + 2$, $\overline{\mathrm{CD}} = x + 5$ 일 때, $\overline{\mathrm{AB}}$ 의 길이 는? 2 5 3 6 4 7 $B^{-}-3x+2--$

대설
$$\overline{AD} = \overline{BC} \circ | \Box \overline{\Xi}$$

$$2x + 5 = 3x + 2, x = 3$$

$$\overline{AB} = \overline{CD} = 3 + 5 = 8$$

8. 평행사변형 ABCD 의 ∠x , ∠y 의 값을 차례로 나열한 것은?



①
$$\angle x = 20^{\circ}$$
, $\angle y = 20^{\circ}$

③
$$\angle x = 20^{\circ}$$
, $\angle y = 30^{\circ}$
⑤ $\angle x = 30^{\circ}$, $\angle y = 40^{\circ}$

$$4 \quad \angle x = 30^{\circ} , \ \angle y = 30^{\circ}$$

$$\angle ADB = \angle x = 30^{\circ}$$

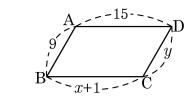
$$\angle ADB = \angle x = 30^{\circ}$$

 $\triangle BCD \text{ of } \angle x + \angle y + 130^{\circ} = 180^{\circ}, \ \angle y = 180^{\circ} - 30^{\circ} - 130^{\circ} = 20^{\circ}$

- 9. 다음 중 평행사변형에 대한 설명으로 옳지 않은 것은?
 - ① 두 쌍의 대변이 평행하다.
 - ② 두 쌍의 대변의 길이가 같다.
 - ③ 두 쌍의 대각의 크기가 서로 같다.
 - ④ 두 대각선이 서로 수직이등분한다.
 - ⑤ 두 대각선은 서로 다른 것을 이등분한다.

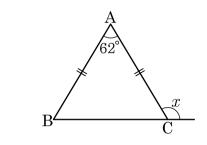
해설두 대각선이 서로 수직이등분하는 것은 마름모와 정사각형이다.

10. 다음 사각형 ABCD 가 평행사변형이 되도록 x, y 의 값을 차례로 구한 것은?



두 쌍의 대변의 길이가 각각 같아야 한다.
$$x+1=15, x=14$$
 $y=9$

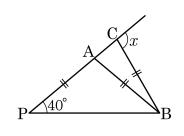
11. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC 에서 $\angle A = 62^\circ$ 일 때. $\angle x$ 의 크기는?



$$\angle ACB = \frac{1}{2}(180^{\circ} - 62^{\circ}) = 59^{\circ}$$

 $\therefore \angle x = 180^{\circ} - 59^{\circ} = 121^{\circ}$

12. 다음 그림에서 $\angle P=40^\circ$ 일 때, $\angle x$ 의 크기는? (단, $\overline{AP}=\overline{AB}=\overline{BC}$)

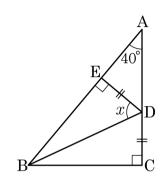


$$\triangle$$
APB 는 이등변삼각형이므로
 \angle P = \angle ABP = 40°
 \angle BAC = $40^{\circ} + 40^{\circ} = 80^{\circ}$
 \triangle ABC 는 이등변삼각형이므로

$$\therefore \angle x = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

 $\angle BAC = \angle BCA = 80^{\circ}$

13. $\triangle ABC$ 에서 $\angle C = \angle E = 90^\circ$, $\angle A = 40^\circ$, $\overline{CD} = \overline{ED}$ 일 때, $\angle x$ 의 크기는?

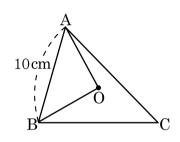


해설

△BDE ≡ △BDC(RHS합동) 이므로,

 $\angle \mathrm{EBD} = \angle \mathrm{CBD} = 25^\circ$, $\triangle \mathrm{BDE}$ 에서 $\angle x = 65^\circ$

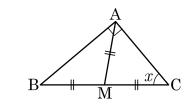
14. 다음 그림에서 점 O는 \triangle ABC의 외심이다. $\overline{AB} = 10 \, \mathrm{cm}$ 이고, \triangle AOB 의 둘레의 길이가 $24 \, \mathrm{cm}$ 일 때, \triangle ABC의 외접원의 반지름의 길이는?



① 3cm ② 4cm ③ 5cm ④ 6cm ⑤ 7cm

점 O가
$$\triangle ABC$$
의 외심이므로 $\overline{OA} = \overline{OB}$
따라서 $\triangle AOB$ 의 둘레의 길이는
 $\overline{OA} + \overline{OB} + \overline{AB} = 2\overline{OA} + 10 = 24$
 $\therefore OA = 7 \text{ (cm)}$

15. 다음 그림에서 점 M 은 ∠A = 90° 인 직각삼각형 ABC 의 빗변의 중점이다. ∠AMB : ∠AMC = 5 : 4 일 때, ∠x 의 크기를 구하여라.

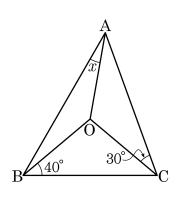


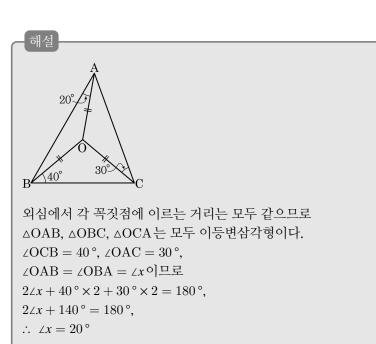
①
$$30^{\circ}$$
 ② 40° ③ 50° ④ 60° ⑤ 70°

$$\angle AMB: \angle AMC=5:4$$
 이므로 $\angle AMB=100^\circ, \angle AMC=80^\circ$ $\overline{AM}=\overline{CM}$ 이므로 $\triangle AMC$ 는 이등변삼각형, $\angle MAC=\angle MCA$ 이다.

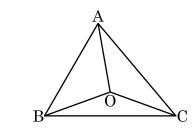
 $\angle \mathrm{AMC} = 80^\circ$ 이므로 $\angle \mathrm{MAC} = (180^\circ - 80^\circ) \div 2 = 50^\circ$ 이다.

16. 다음 그림에서 점 O는 △ABC의 외심이다. ∠OBC = 40°, ∠ACO = 30°일 때, ∠x의 크기는?



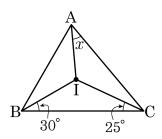


17. 다음 그림의 △ABC 에서 점 O는 외심이고 ∠AOB : ∠COA : ∠BOC = 5 : 6 : 7 일 때, ∠ACB 의 크기를 구하면?



$$\angle ACB = 360^{\circ} \times \frac{5}{(5+6+7)} \times \frac{1}{2} = 50^{\circ}$$

18. 다음 그림에서 점 I가 $\triangle ABC$ 의 내심 일 때, $\angle x$ 의 크기는?



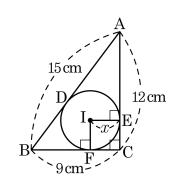
② 20°

 325° 430°

 $30^{\circ} + 25^{\circ} + \angle x = 90^{\circ}$

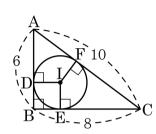
$$\therefore \angle x = 35^{\circ}$$

19. 다음 그림과 같이 \triangle ABC 에 내접하는 원 I 의 반지름의 길이 x 는 얼마인가?



해설
$$x = \overline{\text{CE}} = \overline{\text{CF}}$$
 이므로 $\overline{\text{BD}} = \overline{\text{BF}} = 9 - x$, $\overline{\text{AD}} = \overline{\text{AE}} = 12 - x$ 따라서 $(9 - x) + (12 - x) = 15$ 이므로 $x = 3 \text{(cm)}$ 이다.

20. 다음 그림에서 원 I 는 직각삼각형 ABC 의 내접원이고, 점 D, E, F 는 각각 접점이다. 이 때, 내접원 I 의 반지름의 길이는? (단, $\overline{AB}=6$, $\overline{BC}=8$, $\overline{AC}=10$)



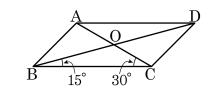
① 1 ②
$$1.5$$
 ③ 2 ④ 2.5 ⑤ 3

내접원의 반지름의 길이를
$$r$$
이라 하면
$$\Delta ABI + \Delta BCI + \Delta ACI = \frac{1}{2} \times 8 \times 6 = 24 \; ,$$

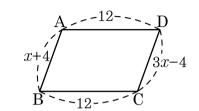
$$\frac{1}{2} \times (6+8+10) \times r = 24 \mathrel{\therefore} r = 2$$

해설

21. 평행사변형 ABCD 에서 두 대각선의 교점을 O 라 하고, ∠ACB = 30°, ∠CBD = 15° 라고 할 때, ∠AOB 의 크기는?



22. 다음 그림과 같은 \square ABCD가 평행사변형이 되도록 하는 x의 값은?



) 1 (2

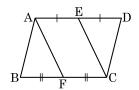
③ 3

4 4

 \bigcirc 5

x + 4 = 3x - 4이므로 x = 4이다.

23. 다음 그림과 같은 평행사변형 ABCD 에서 변 AD , 변 BC의 중점을 각각 점 E, F 라 할 때, □AFCE 는 어떤 사각형인가?



③ 평행사변형③ 직사각형

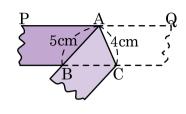
④ 정사각형

② 마름모

⑤ 사다리꼴

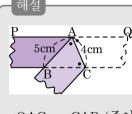
해설

 $\overline{AE} = \overline{FC}$ 이고 $\overline{AE}//\overline{FC}$ 이므로 사각형 AFCE 는 평행사변형이다. ${f 24.}$ 다음 그림과 같이 폭이 일정한 종이 테이프를 접었을 때, $\overline{
m BC}$ 의 길이는?



따라서 $\triangle ABC$ 는 밑각의 크기가 같고, $\overline{AB} = \overline{BC}$ 인 이등변삼각

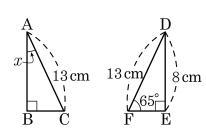
- ① 4cm ② 4.5cm ③ 5cm
- ④ 5.5cm ⑤ 6cm



∠QAC = ∠CAB (종이 접은 각) ∠QAC = ∠ACB (엇각)

ZQAC = ZACB (¾4 ∴ ∠CAB = ∠ACB

형이다. ∴ $\overline{BC} = \overline{AB} = 5 cm$ **25.** 합동인 두 직각삼각형 ABC, DEF가 다음 그림과 같을 때, $\angle x$ 의 크기는?



① 65°

 25°

△ABC, △DEF는 서로 합동이다.

 345°

4 35°

△ABC, △DEF 는 서로 합농이다. ∴ ∠x = ∠FDE = 180° - 90° - 65° = 25°

 26. 다음 그림과 같이 AB = AC 인 직각이등변 삼각형의 두 꼭짓점 B, C 에서 직선 l 에 내린 수선의 발을 각각 D, E 라 하자. BD = 9cm , CE = 7cm 일 때, 사다리꼴 BCED 의 넓이 는?
 l D A E (D A E) A E (D A

 \bigcirc 81cm²

 $128 \mathrm{cm}^2$

- $2 \text{ } 96\text{cm}^2$
 - ⑤ 256cm^2

직각삼각형에서 빗변과 다른 한 각이 같으면 두 삼각형이 합동

(3) 112cm²

$$\triangle$$
ABD , \triangle CAE 에 대하여 \angle BAD = $\angle x$ 로 두면.

$$\angle BAD = \angle x + 70$$
,
 $\angle CAE = 180^{\circ} - 90^{\circ} - \angle x = 90^{\circ} - \angle x$

$$\angle ABD = 180^{\circ} - 90^{\circ} - \angle x = 90^{\circ} - \angle x = \angle CAE$$

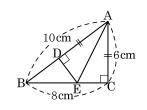
 $\overline{AB} = \overline{CA}$

이므로

△ABD ≡ △CAE (RHA 합동) 따라서 $\overline{\mathrm{DA}} = 7\mathrm{cm}$, $\overline{\mathrm{AE}} = 9\mathrm{cm}$ 이다.

사다리꼴 BCED 의 넓이= $\frac{(9+7)\times(9+7)}{2} = 128(\text{cm}^2)$

27. 직각삼각형 ABC 에서 $\overline{AC} = \overline{AD}$, $\overline{AB} \bot \overline{DE}$ 이다. $\overline{AB} = 10$ cm, $\overline{BC} = 8$ cm, $\overline{AC} = 6$ cm 일 때, 삼각형 BED 의 둘레는 삼각형 ABC 의 몇 배인가?

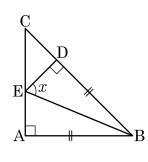


①
$$\frac{1}{3}$$
 비 ② $\frac{1}{2}$ 비 ③ $\frac{1}{4}$ 비 ④ $\frac{1}{5}$ 비 ⑤ $\frac{1}{6}$ 비

$$\triangle ACE \equiv \triangle ADE(RHS \ \text{합동}) \ \text{이므로} \ \overline{DE} = \overline{EC}, \ \overline{AD} = \overline{AC}$$
 \therefore $\overline{BD} = 4cm$ $\triangle BDE \ \text{에서} \ \overline{DE} + \overline{BE} = \overline{EC} + \overline{BE} = \overline{BC} = 8cm \ \text{이므로}$ $\triangle BDE \ \text{의 둘레의 길이=} \ 4 + 8 = 12(cm)$

 $\triangle ABC = 10 + 8 + 6 = 24(cm)$ 이므로 $\frac{1}{2}$ 배이다.

28. 다음 그림과 같이 $\angle A=90^\circ$, $\overline{AB}=\overline{AC}$ 인 직각이등변삼각형 ABC 가 있다. $\overline{AB}=\overline{DB}$ 인 점 D 를 지나며 \overline{AC} 와 만나는 점을 E 라고 할 때, $\angle x$ 의 크기는?



①
$$60^{\circ}$$
 ② 62.5° ③ 65° ④ 67.5° ⑤ 70°

$$\angle ABC = 45^{\circ}$$

$$\triangle ABE \equiv \triangle DBE \text{ (RHS 합동)}$$
이므로 $\overline{AE} = \overline{DE}$ 이고, \overline{BE} 는 $\angle ABC 를 이등분한다.$

$$\angle EBD = 45^{\circ} \times \frac{1}{2} = 22.5^{\circ}$$

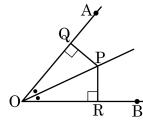
∆DBE 에서

해설

$$\therefore \ \angle x = 90^{\circ} - 22.5^{\circ} = 67.5^{\circ}$$

Q,R 라 할 때, $\overline{PQ}=\overline{PR}$ 이면 \overline{OP} 는 $\angle AOB$ 의 이등분선이다.」를 보이기 위해 그린 것이다. 다음 중 필요한 조건이 아닌 것은? $A_{/\!\!\!/}$

29. 다음 그림은 「한 점 P 에서 두 변 OA, OB 에 내린 수선의 발을 각각



- ① $\overline{PQ} = \overline{PR}$
- ⑤ $\triangle POQ \equiv \triangle POR$

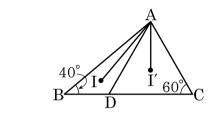
$$\bigcirc$$
 \angle QOP = \angle ROP

② OP 는 공통

해설
④는 옳다는 것을 보여야 할 대상이므로 필요한 조건이 아니다.
ΔQPO 와 ΔRPO 에서
i) OP 는 공통(②)
ii)PQ = PR (가정)(①)
iii)∠PQO = ∠PRO = 90°(가정)(③)
i), ii), iii)에 의해 ΔQPO ≡ ΔRPO (RHS 합동)(⑤)이다.
합동인 도형의 대응각은 같으므로

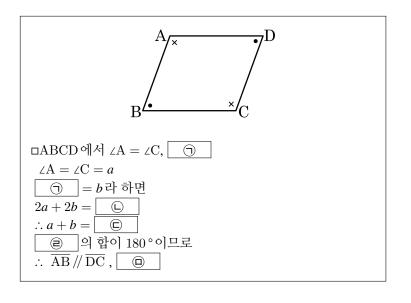
 $\angle QOP = \angle ROP$ 이므로 \overline{OP} 는 $\angle AOB$ 의 이등분선이다.

30. 다음 그림에서 점 I, I' 는 각각 \triangle ABD, \triangle ADC 의 내심이다. \angle B = 40°, \angle C = 60° 일 때, \angle IAI' 의 크기는?



$$\angle IAI' = \frac{1}{2} \angle A = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$$

31. 다음은 '두 쌍의 대각의 크기가 각각 같은 사각형은 평행사변형이다.' 를 설명하는 과정이다. ⊙ ~ ⑩에 들어갈 것으로 옳지 않은 것은?



① ① :
$$\angle B = \angle D$$
 ② ② : 360° ③ © : 180°

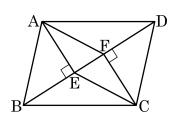
동측내각의 합이 180°이다.

32. 다음 그림과 같이 평행사변형 ABCD 의 두 꼭짓점 A, C 에서 대각선 B, D 에 내린 수선 의 발을 각각 E, F 라 할 때, 다음 중 □AECF 가 평행사변형이 되는 조건으로 가장 알맞은 것은?

① $\overline{AE}//\overline{CF}$, $\overline{AF}//\overline{CE}$ ② $\overline{AE} = \overline{CF}$, $\overline{AF} = \overline{CE}$

 $\boxed{3}\overline{AE} = \overline{CF}, \ \overline{AE}//\overline{CF}$ $\boxed{4} \ \overline{AE}//\overline{CF}$

△ABE ≡ △CDF(RHA합동) 이므로 ĀĒ = CF, ĀĒ//CF 이다. **33.** 다음 그림과 같이 평행사변형 ABCD 의 두 꼭짓점 A, C 에서 대각선 BD 에 내린 수선의 발을 각각 E, F 라 할 때, □AECF 는 평행사변형 이다. 이용되는 평행사변형이 되는 조건은?



- ① 두 쌍의 대각의 크기가 각각 같다.
- ② 두 대각선이 다른 것을 이등분한다.
- ③ 두 쌍의 대변이 각각 평행하다.
- ④ 한 쌍의 대변이 평행하고, 그 길이가 같다.
- ⑤ 두 쌍의 대변의 길이가 각각 같다.

해설

 $\triangle ABE \equiv \triangle CDF(RHA 합동)$ 이므로 $\overline{AE} = \overline{CF}$ $\angle AEF = \angle CFE = 90^\circ$ (엇각)이므로 $\overline{AE}//\overline{CF}$ 따라서 한 쌍의 대변이 평행하고 그 길이가 같으므로 $\square AECF$ 는 평행사변형이다.