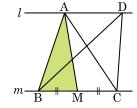
${f 1.}$ 다음 그림의 사각형 ${f ABCD}$ 에서 ${f AD}$ $\#{f BC}$ 이 고, $\triangle ABC$ 의 넓이가 $20\,\mathrm{cm}^2$ 일 때, $\triangle DBC$ 의 넓이를 구하여라.

▷ 정답: 20cm²

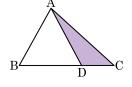
▶ 답:


밑변이 동일하고 밑변과 평행한 직선까지의 거리가 같으므로

해설

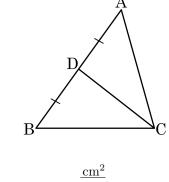
 ΔABC 의 넓이와 ΔDBC 의 넓이는 같다. \therefore \triangle DBC = $20 \,\mathrm{cm}^2$ 이다.

 $\underline{\mathrm{cm}^2}$


2. 다음 그림과 같이 평행한 두 직선 l, m 이 있다. $\Delta DBC = 20 \, \mathrm{cm}^2$ 이고, 점 M 은 \overline{BC} 의 중점일 때, △ABM 의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$ ▶ 답: ▷ 정답: 10 cm²

 $\Delta {
m ABM}$ 의 밑변의 길이는 $\Delta {
m DBC}$ 의 밑변의 길이의 ${1\over 2}$ 이므로 넓이도 $\frac{1}{2}$ 이다. $\therefore \triangle ABM = 10 \text{ (cm}^2)$

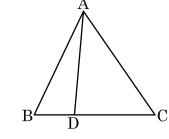

다음 $\Delta {
m ABC}$ 의 넓이는 $30\,{
m cm}^2$ 이다. $\overline{
m BD}$ 의 3. 길이가 $\overline{\mathrm{DC}}$ 의 길이보다 2배 길다고 할 때, △ADC 의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$ 답: ▷ 정답: 10 cm²

 $\overline{\rm DC}$ 의 길이는 $\overline{\rm BD}$ 의 길이의 $\frac{1}{2}$ 이므로 $\overline{\rm BC}$ 의 길이의 $\frac{1}{3}$ 이 된다. 그러므로 넓이도 삼각형 ABC 의 넓이의 $\frac{1}{3}$ 이 된다. 따라서 $\Delta {\rm ADC}$ 의 넓이는 $10\,{\rm cm}^2$ 이다.

4. $\overline{\rm CD}$ 가 $\triangle {\rm ABC}$ 의 중선이고 $\triangle {\rm ABC}$ 의 넓이가 $32{
m cm}^2$ 일 때, $\triangle {\rm ADC}$ 의 넓이를 구하여라.

 ▷ 정답:
 16 cm²

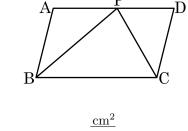

▶ 답:

해설

 $\triangle ADC = 32 \div 2 = 16(cm^2)$

중선 $\overline{\mathrm{CD}}$ 는 $\Delta\mathrm{ABC}$ 의 넓이를 이등분하므로

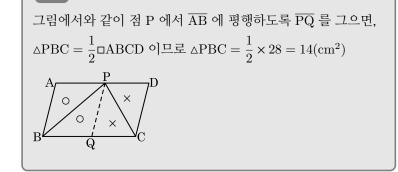
 $\triangle ABC$ 에서 $\overline{BD}:\overline{DC}=1:2$ 이다. $\triangle ABC=21cm^2$ 일 때, $\triangle ADC$ 의 넓이는? **5.**

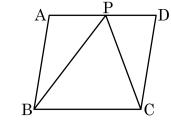

- \bigcirc 7cm² 414cm^2
- 2 8cm^2
- $3 \frac{21}{2} \text{cm}^2$

 \bigcirc 16cm^2

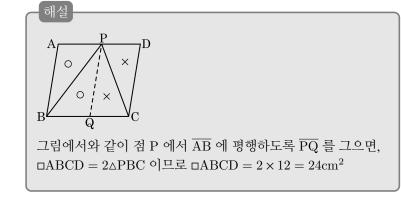
두 삼각형의 높이는 같고 $\overline{\mathrm{BD}}$: $\overline{\mathrm{BC}}$ = 1:3 이므로 $\Delta\mathrm{ADC}$:

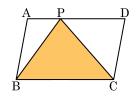
 $\triangle ABC = 2:3$ 따라서 $\triangle ADC = \triangle ABC \times \frac{2}{3} = 14(cm^2)$


6. 다음 그림에서 □ABCD 는 평행사변형이다. □ABCD = $28 \mathrm{cm}^2$ 일 때, ΔPBC 의 넓이를 구하여라.


 ▶ 정답:
 14 cm²

7 00: 11 <u>em</u>


▶ 답:

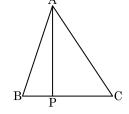

7. 평행사변형 ABCD 에서 $\overline{\rm AD}$ 에 임의의 점 P 를 잡았을 때, $\Delta \rm PBC = 12cm^2$ 이다. $□ \rm ABCD$ 의 넓이를 구하면?

- ① 6cm^2 ④ 30cm^2
- $2 18 \text{cm}^2$
- 324cm^2
- \bigcirc 36cm²

8. 다음 그림에서 평행사변형 ABCD 의 넓이가 $20\,\mathrm{cm}^2$ 일 때, $\overline{\mathrm{AD}}$ 위의 임의의 점 P 에 대하 여 $\Delta\mathrm{PBC}$ 의 넓이를 구하여라.

정답: 10 cm²

0 6 10 <u>cm</u>

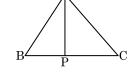

평행사변형 ABCD의 넓이가 20 cm² 이므로 ΔPBC는 넓이는

▶ 답:

평행사변형 ABCD 넓이의 절반인 10 cm² 이다.

 $\underline{\rm cm^2}$

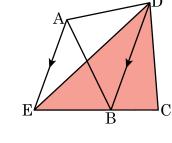
9. 다음 그림에서 $\overline{BP}:\overline{CP}=1:2, \Delta ABC=8\,\mathrm{cm}^2$ 일 때, ΔABP 의 넓이를 구하여라.


답: $\underline{\text{cm}^2}$ > 정답: $\underline{8}\underline{\text{cm}^2}$

3

 $\triangle ABP$ 와 $\triangle APC$ 의 높이는 같으므로 $\triangle ABP = 8 \times \frac{1}{3} = \frac{8}{3} \text{ (cm}^2\text{)}$

J J


- 10. 다음 그림의 ΔABC 에서 BP : PC = 3 : 4 이고, ΔABC의 넓이가 49 cm² 일 때, ΔAPC 의 넓이는?
 - ① $14 \,\mathrm{cm}^2$ ② $21 \,\mathrm{cm}^2$ ③ $28 \,\mathrm{cm}^2$
 - $4 \ 30 \, \text{cm}^2$ $3 \ 42 \, \text{cm}^2$

ΔABP와 ΔAPC의 높이는 같으므로

 $\triangle APC = 49 (\text{cm}^2) \times \frac{4}{7} = 28 (\text{cm}^2)$

11. 다음 그림에서 \overline{AE} $/\!/ \, \overline{DB}$ 이고, $\Box ABCD = 12\,\mathrm{cm}^2$ 일 때, ΔDEC 의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$

 ▷ 정답:
 12 cm²

▶ 답:

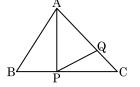
해설

 $\Delta DEC = \Delta DEB + \Delta DBC$ $= \Delta ABD + \Delta DBC$ $= \Box ABCD$ $\therefore \Delta DEC = 12(cm^{2})$

다음 그림은 □ABCD 의 변 BC 의 연장선 위에 AC // DE 가 되게 점 E 를 잡은 것이다. □ABCD 의 넓이가 30 cm² 일 때, △ABE 의 넓이는?
 ① 15 cm² ② 20 cm² ③ 25 cm²

B C E

 $40 \, \mathrm{cm}^2$ $5 \, 60 \, \mathrm{cm}^2$


(4) 30 cm⁻ (5) 60

- 해설) - <mark>재절</mark>/ 1

 \overline{AC} $/\!/ \overline{DE}$ 이므로 $\triangle ACD = \triangle ACE$ 이다. $\triangle ABE = \triangle ABC + \triangle ACE$ $= \triangle ABC + \triangle ACD$

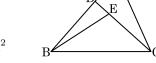
 $= \Box ABCD$ $\therefore \Delta ABE = 30 (cm^2)$

13. 다음 그림에서 $\overline{BP}:\overline{PC}=2:3$, $\overline{CQ}:\overline{QA}=1:2$ 이다. $\triangle ABC=20\,\mathrm{cm}^2$ 일 때, △APQ의 넓이를 구하여라.

▷ 정답: 8 <u>cm²</u>

 $\underline{\mathrm{cm}^2}$

▶ 답:

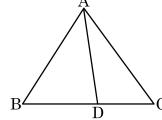

 \triangle ABP와 \triangle APC의 높이는 같으므로 \triangle ABP = $20 \times \frac{2}{5} = 8 \text{ (cm}^2\text{)}$

5 $\Delta APC = 20 \times \frac{3}{5} = 12 (\text{cm}^2)$ ΔPCQ 와 ΔAPQ 의 높이는 같다. $\Delta PCQ = 12 \times \frac{1}{3} = 4 (\text{cm}^2)$ $\Delta APQ = 12 \times \frac{2}{3} = 8 (\text{cm}^2)$

14. 다음 그림에서 $\triangle ABC$ 의 넓이는 $24\,\mathrm{cm}^2$ 이 고 \overline{AD} : \overline{DB} = 1 : 2, \overline{DE} : \overline{EC} = 1 : 3 일 때, △EBC 의 넓이는?

 $312 \,\mathrm{cm}^2$ 2 8 cm^2 $\bigcirc 4 \, \mathrm{cm}^2$

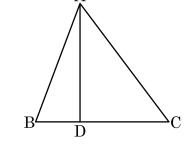
 $4 \ 16 \, \text{cm}^2$ $5 \ 20 \, \text{cm}^2$


ΔDAC와 ΔDBC의 높이는 같으므로

해설

 $\Delta {
m DBC} = 24 imes rac{2}{3} = 16 ({
m \,cm}^2)$ $\Delta {
m DBE}$ 와 $\Delta {
m EBC}$ 의 높이는 같으므로

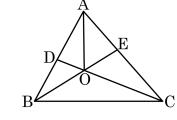
 $\Delta BEC = 16 \times \frac{3}{4} = 12 (\,\mathrm{cm}^2)$


- 15. 다음 그림과 같은 $\triangle ABC$ 의 넓이가 $70cm^2$ 이고 $\overline{BD}:\overline{DC}=4:3$ 일 때, $\triangle ADC$ 의 넓이는?

- 4030cm^2 535cm^2
 - 20cm^2
- $3 25 \text{cm}^2$

 \triangle ADC의 넓이는 = $70 \times \frac{3}{4+3} = 30 (\text{cm}^2)$

16. 다음 그림에서 \overline{BD} : $\overline{CD}=1$: 2, $\triangle ABC=9$ 일 때, $\triangle ABD$ 의 넓이를 구하여라.



▷ 정답: 3

▶ 답:

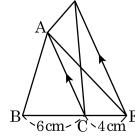
17. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AE}:\overline{EC}=3:4,\overline{BO}:\overline{OE}=3:2$ 이다. $\triangle EOC$ 의 넓이가 $8cm^2$ 일 때, $\triangle ABC$ 의 넓이는?

- $4 32 \text{cm}^2$
- \bigcirc 24cm² \bigcirc 35cm^2
- $3 28 \text{cm}^2$

 $\Delta {
m EOC}$ 와 $\Delta {
m COB}$ 에서 높이는 같고 밑변은 2:3이므로

 $\Delta EOC = \Delta CBE \times \frac{2}{2+3} = 8(cm^2)$

 $\Delta CBE = \Delta ABC \times \frac{4}{3+4} = 20 (cm^2)$ ∴ $\triangle ABC = 35cm^2$


18. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AD}:\overline{DB}=1:1,\overline{DO}:\overline{OC}=1:6,$ $\overline{AF}:\overline{FC}=1:3$ 이다. $\triangle ABC$ 의 넓이가 560일 때, $\triangle COF$ 의 넓이를 구하여라.

▶ 답: ▷ 정답: 180

 $\triangle CAD : \triangle CBD = 1 : 1$ 이므로 $\triangle CAD = \frac{1}{2} \triangle ABC = \frac{1}{2} \times 560 = 280$

2 2 \overline{AO} 를 그으면 $\triangle ADO: \triangle ACO = 1:6$ 이므로 $\triangle ACO = \frac{6}{7}\triangle CAD = \frac{6}{7}\times 280 = 240$ 또, $\triangle AOF: \triangle COF = 1:3$ 이므로 $\triangle COF = \frac{3}{4}\triangle ACO = \frac{3}{4}\times 240 = 180$

19. 다음 그림에서 \overline{AC} $/\!/ \overline{DE}$ 일 때, $△ABC = 24cm^2$ 이다. □ABCD 의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$

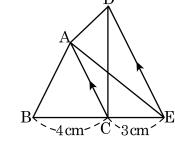
➢ 정답: 40 cm²

▶ 답:

해설

 $\Box ABCD = \triangle ABC + \triangle ACD$

 $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{DE}}$ 이므로 $\triangle\mathrm{ACD}=\triangle\mathrm{ACE}$


 $= \triangle ABC + \triangle ACE$ $= \triangle ABE$

= AABE (높이) = 24 × 2 ÷ 6 = 8(cm) 이므로

 $\Box ABCD = \triangle ABE$ $= 10 \times 8 \times \frac{1}{2} = 40 \text{ (cm}^2\text{)}$

2

20. 다음 그림에서 \overline{AC} $/\!/ \, \overline{DE}$ 일 때, △ABC = $8\,\mathrm{cm}^2$ 이다. □ABCD 의 넓이를 구하여라.

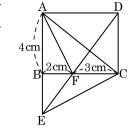
 $\underline{\mathrm{cm}^2}$

정답: 14 cm²

▶ 답:

 $\triangle ACD = \triangle ACE$ 이므로 $\Box ABCD = \triangle ABC + \triangle ACD$ $= \triangle ABC + \triangle ACE$ $= \triangle ABE$ $(높이) = 8 \times 2 \div 4 = 4 \text{ (cm)}$ $(넓이) = 7 \times 4 \div 2 = 14 \text{ (cm}^2)$

- 21. 다음 그림과 같은 직사각형 ABCD 에서 \overline{AB} 의 연장선 위의 점 E 를 잡아 \overline{BC} 와 \overline{ED} 의 교점을 F 라 할 때, ΔFEC 의 넓이를 구하여 라.
- A D
 4cm
 B
 3cm
 5cm
 C

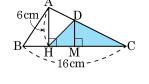

 답:
 cm²

 > 정답:
 6 cm²

해설

 $\overline{\mathrm{BD}}$ 를 그으면 $\Delta \mathrm{BFD} = \Delta \mathrm{FEC}$ 이므로 $\Delta \mathrm{FEC} = \frac{1}{2} \times 3 \times 4 = 6 \; (\; \mathrm{cm}^2)$

- 다음 그림에서 직사각형 ABCD 에서 점 E 는 AB 의 연장선 위의 점이고 DE 와 BC 의 교 점이 F 이다. 이때 △FEC 의 넓이는?
 ① 1 cm²
 ② 1.5 cm²
 ③ 2 cm²
 - ① $1 \,\mathrm{cm}^2$ ② $1.5 \,\mathrm{cm}^2$ ③ $4 \,\mathrm{cm}^2$
 - o bem ojaen


그림에서 $\overline{\mathrm{BD}}$ 를 그으면, $\Delta \mathrm{BFD} = \Delta \mathrm{FEC}$ 이므로

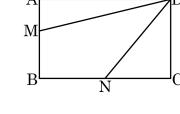
해설

 $\triangle FEC = \frac{1}{2} \times 2 \times 4 = 4 \text{ (cm}^2\text{)}$

2

23. 다음 그림에서 점 M 은 \overline{BC} 의 중점이다. $\overline{\mathrm{AH}}=6\,\mathrm{cm},\,\overline{\mathrm{BC}}=16\,\mathrm{cm}$ 일 때, $\Delta\mathrm{DHC}$ 의 넓이를 구하여라.

▶ 답: ▷ 정답: 24<u>cm²</u>

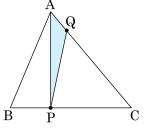

 $\underline{\mathrm{cm}^2}$

 $\overline{\mathrm{AM}}$ 을 그으면 $\Delta\mathrm{DHM}=\Delta\mathrm{AMD}$ 이므로

해설

 $\triangle DHC = \triangle AMC = \frac{1}{2} \triangle ABC$ $= \frac{1}{2} \times \frac{1}{2} \times 16 \times 6$ $= 24 \text{ (cm}^2\text{)}$

24. 다음 그림과 같은 직사각형 ABCD 에서 점 N 은 \overline{BC} 의 중점이고, $\overline{AM}:\overline{MB}=2:3$ 이다. $\Box ABCD=60 \mathrm{cm}^2$ 일 때, $\Box MBND$ 의 넓이를 구하여라.


 $\underline{\text{cm}^2}$

정답: 33 <u>cm²</u>

▶ 답:

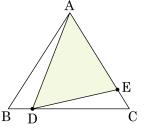
 $\Delta DMB = \frac{3}{5} \Delta ABD = \frac{3}{10} \Box ABCD$ $\Delta DBN = \frac{1}{2} \Delta DBC = \frac{1}{4} \Box ABCD$ $\Box MBND = \Delta DMB + \Delta DBN$ $= \frac{11}{20} \Box ABCD$ $= \frac{11}{20} \times 60 = 33(cm^2)$

25. 다음 그림에서 $\overline{BP}:\overline{PC}=1:2,\overline{CQ}:\overline{QA}=4:1$ 이다. $\triangle ABC=30\,\mathrm{cm}^2$ 일 때, $\triangle QAP$ 의 넓이를 구하여라.

▷ 정답: 4<u>cm²</u>

▶ 답:

 $\overline{\mathrm{BP}}:\overline{\mathrm{PC}}=1:2$ 이고 $\Delta\mathrm{ABP}$ 와 $\Delta\mathrm{APC}$ 의 높이가 같으므로

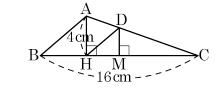

 $\triangle APC = \frac{2}{3} \times \triangle ABC = \frac{2}{3} \times 30 = 20 (\text{ cm}^2)$

 $\underline{\mathrm{cm}^2}$

 $\overline{\mathrm{CQ}}:\overline{\mathrm{QA}}=4:1$ 이고 $\triangle\mathrm{QPC}$ 와 $\triangle\mathrm{QAP}$ 의 높이가 같으므로

 $\triangle QAP = \frac{1}{5} \times \triangle APC = \frac{1}{5} \times 20 = 4(\text{ cm}^2)$

26. 다음 그림에서 $\overline{BD}:\overline{CD}=\overline{CE}:\overline{AE}=$ 1 : 4이다. $\triangle ADE = 32 \, \mathrm{cm}^2$ 일 때, $\triangle ABC$ 의 넓이를 구하여라.

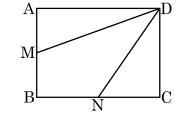

 $\underline{\mathrm{cm}^2}$ ▶ 답: ▷ 정답: 50 cm²

 $\triangle ABC$ 의 넓이를 x라 하면

 $\triangle \text{ADC} = x \times \frac{4}{5} = \frac{4}{5}x$

 $\triangle ADC$ 에서 $\overline{CE}: \overline{AE} = 1:4$ 이므로 $\triangle ADE = \triangle ADC \times \frac{4}{5} = \frac{4}{5}x \times \frac{4}{5} = \frac{16}{25}x$ $\frac{16}{25}x = 32$ 이므로 x = 50(cm²)

 ${f 27}$. 다음 그림에서 점 M 은 $\overline{
m BC}$ 의 중점일 때, $\Delta {
m DHC}$ 의 넓이는?


- ① $4 \,\mathrm{cm}^2$ ④ $14 \,\mathrm{cm}^2$
- ② $8 \, \text{cm}^2$ ③ $16 \, \text{cm}^2$
- $3 12 \,\mathrm{cm}^2$
- (9) 10 cm

 $\overline{\mathrm{AM}}$ 을 그으면, $\Delta\mathrm{DHM} = \Delta\mathrm{AMD}$ 이므로,

해설

 $\triangle DHC = \triangle AMC = \frac{1}{2} \triangle ABC = 16 \text{ (cm}^2\text{)}$

28. 직사각형 ABCD 에서 점 M, N 은 AB, BC 의 중점이다. □ABCD = $50 \mathrm{cm}^2$ 일 때, □MBND 의 넓이를 구하면?

- ① 12.5cm² ④ 27.5cm²
- ② 20cm^2 ③ 30cm^2
- $325 \mathrm{cm}^2$

해설

0 000

점 M, N 이 모두 \overline{AB} , \overline{BC} 의 중점이므로 $\square MBND = \frac{1}{2} \square ABCD = 25 cm^2$