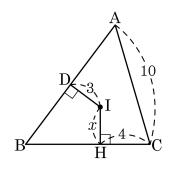
1. 다음 그림에서 점 I가 $\triangle ABC$ 의 내심일 때, x의 값을 구하여라.



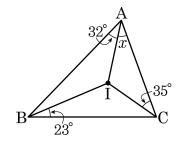
▶ 답:

➢ 정답: 3

해설

삼각형의 내심에서 세 변에 이르는 거리는 같으므로 $x=\overline{\mathrm{IH}}=3$ 이다.

다음 그림에서 점 I가 △ABC의 내심일 때 ∠x = ()°이다.
 () 안에 들어갈 알맞은 수를 구하여라.



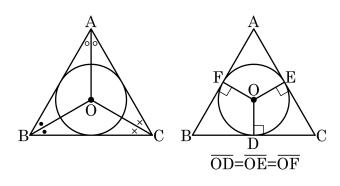
▶ 답:

➢ 정답: 32

- 해설

삼각형의 세 내각의 이등분선의 교점이 삼각형의 내심이다. 따라서 $\angle {
m BAI} = \angle {
m CAI} = 32\,^{\circ}$ 이다.

3. 다음 그림이 설명하고 있는 것으로 옳은 것은?



외심

② 내심

③ 무게중심

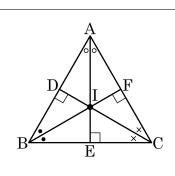
④ 방심

⑤ 수심

해설

내심은 세 내각의 이등분선의 교점이고 세 변에서 같은 거리에 있는 점이다. 따라서 내심이다.

다음은 삼각형의 세 내각의 이등분선이 한 점에서 만남을 나타낸 4. 것이다. 빈칸에 공통으로 들어갈 알맞은 것을 고르면?



△IBE와 △IBD에서 $\angle IEB = \angle IDB = 90^{\circ}$.

IB는 공통변.

∠IBE = ∠IBD 이므로

△IBE ≡ △IBD (RHA 합동) $\therefore \overline{\mathrm{ID}} = | \cdots (1)$

같은 방법으로 $\triangle ICE = \triangle ICF (RHA 합동) 이므로$

 \therefore = $\overline{\text{IF}} \cdots \bigcirc$

①. □에서

 $\therefore \overline{ID} = \overline{IF}$

△ADI와 △AFI에서

 $\angle ADI = \angle AFI = 90$ °, \overline{AI} 는 공통 변, $\overline{ID} = \overline{IF}$

이므로 △ADI ≡ △AFI(RHS 합동)

대응각 $\angle DAI = \angle FAI$ 이므로 \overline{AI} 는 $\angle A$ 의 이등분선이다.

따라서 세 각의 이등분선은 한 점에서 만난다.

① <u>IA</u>

 $\overline{\text{3}}$ $\overline{\text{IC}}$ $\overline{\text{4}}$ $\overline{\text{IB}}$ $\overline{\text{5}}$ $\overline{\text{AF}}$

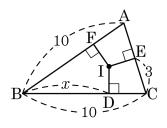
△IBE ≡ △IBD(RHA 합동)이므로

 $\overline{\text{ID}}$ 와 대응변인 $\overline{\text{IE}}$ 의 길이가 같고, $\Delta \text{ICE} = \Delta \text{ICF}(\text{RHA 합동})$

이므로 IE와 대응변인 IF의 길이가 같다.

따라서 빈 칸에 공통으로 IE가 들어간다.

5. 다음 그림에서 점 I는 \triangle ABC의 내심이다. x의 값을 구하여라.



- ▶ 답:
- ▷ 정답: 7

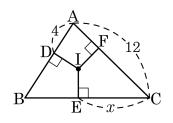
해설

점 I는 \triangle ABC의 내심이므로, $\overline{\text{CE}} = \overline{\text{CD}}$ 이다.

 $\overline{\mathrm{BC}} = x + \overline{\mathrm{CD}}$

 $\therefore x = 10 - 3 = 7$

6. 다음 그림에서 점 $I \leftarrow \triangle ABC$ 의 내심이다. x의 값을 구하여라.



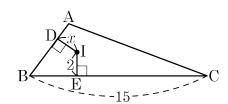
답:

▷ 정답: 8

해설

점 I는 \triangle ABC의 내심이므로, $\overline{\rm AD}=\overline{\rm AF}$ 이고, $\overline{\rm CE}=\overline{\rm CF}$ 이다. 따라서 4+x=12이므로 x=8이다.

7. 다음 그림에서 점 I가 $\triangle ABC$ 의 내심일 때, x의 값을 구하여라.

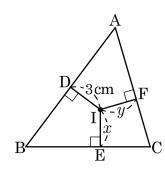


- 답:
- ▷ 정답: 2

해설

삼각형의 내심에서 세 변에 이르는 거리는 같으므로 $x=\overline{\mathrm{IE}}=2$ 이다.

8. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이다. $\overline{ID}=3cm$ 일 때, x+y의 길이는?

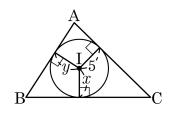


삼각형의 내심에서 세 변에 이르는 거리는 같으므로 $x=y=3(\,\mathrm{cm})$ 이다.

 $\therefore x + y = 6(cm)$

해설

9. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이다. x와 y의 길이의 차를 구하여라.

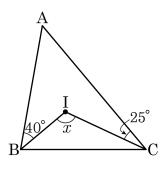


답:

▷ 정답: 0

삼각형의 내심에서 세 변에 이르는 거리는 같다. x-y=0

10. 다음 그림에서 점 I는 \triangle ABC의 내심일 때, $\angle x$ 의 크기는?



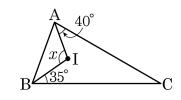
① 110°

② 115° 3 120° 4 125° 5 130°

점 I가 삼각형의 내심이므로 ∠IBC = 40°이고, ∠ICB = 25° 이다.

따라서 삼각형의 내각의 합은 180°이므로 $\angle x = 180^{\circ} - (40^{\circ} + 25^{\circ}) = 115^{\circ}$

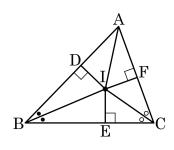
11. 다음 그림에서 점 I가 삼각형의 내심일 때, $\angle x$ 의 크기는?



① 100° ②105° ③ 110° ④ 115° ⑤ 120°

삼각형의 내각의 합은 180°이므로 2x = 180° -(40° +35°) =105°

12. 다음은 '삼각형 ABC의 세 내각의 이등분선은 한 점에서 만난다'를 나타내는 과정이다. ○ ~ ○ 중 잘못된 것은?



ii) $\overline{\text{CI}}$ 는 $\angle{\text{C}}$ 의 이등분선이므로 $\triangle{\text{CEI}} \equiv \triangle{\text{CFI}}$ \therefore $\overline{\text{IE}}$ =

∠B, ∠C의 이등분선의 교점을 I라 하면

i) BI는 ∠B의 이등분선이므로

 $\triangle BDI \equiv \triangle BEI : \overline{ID} = (\bigcirc)$

iv) ID = IF이므로 △ADI ≡ (©)

 $\therefore \angle DAI = (\bigcirc)$

따라서 \overline{AI} 는 $\angle A$ 의 (\bigcirc)이다. 따라서 $\triangle ABC$ 의 세 내각의 이등분선은 한 점에서 만난다.

① ① : ĪĒ ② ② : ĪF (3

④ ② : ∠FAI ⑤ ② : 이등분선

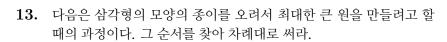
해설

 $\Delta IBE \equiv \Delta IBD(RHA 합동)$ 이므로 \overline{ID} 와 대응변인 \overline{IE} 의 길이가 같고,

©: ∆BDI

 $\Delta ICE \equiv \Delta ICF(RHA 합동)$ 이므로 \overline{IE} 와 대응변인 \overline{IF} 의 길이가 같다.

그러므로, $\overline{IE} = \overline{IF}$ 이므로 $\triangle ADI$ 와 $\triangle AFI$ 에서 $\angle ADI = \angle AFI = 90^\circ$, \overline{AI} 는 공통 변, $\overline{ID} = \overline{IF}$ 이므로 $\triangle ADI \equiv \triangle AFI$ (RHS 합동)



보기

- ① $\triangle ABC$ 의 세 변의 수직이등분선의 교점을 찾아 O 라고 한다.
- \bigcirc 점 O 를 중심으로 하고 \overline{OA} 를 반지름으로 하는 원을 그린다.
 - © 세 내각의 이등분선의 교점을 I 라고 한다.
- ② 점 I 를 중심으로 하고 점 I 에서 한 변까지의 거리를 반지름으로 하는 원을 그려 오린다.
- ◎ 세 내각의 이등분선을 찾는다.
- 답:
- 답:
- 답:
- ▷ 정답: □
- ▷ 정답: □
- ▷ 정답: ②

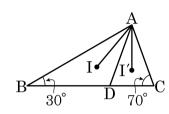
해설

- ◎ 세 내각의 이등분선을 찾는다.
- © 세 내각의 이등분선의 교점을 I 라고 한다.
- ⓐ 점 I 를 중심으로 하고 점 I 에서 한 변까지의 거리를 반지름으로 하는 원을 그려 오린다.

- 14. 민혁이는 친구들과 삼각형 모양의 종이를 가지고 최대한 큰 원으로 오려내려고 한다. 다음 중 틀린 말을 한 학생은 누구인가?
 - ① 민호 : 삼각형 종이로 가장 큰 원을 만들려면 내심을 이용해야지.
 - ② 지훈: 그럼 먼저 삼각형의 세 내각의 이등분선을 그어야겠군.
 - ③ 창교: 그런 다음 세 내각의 이등분선이 만나는 한 점을 찾아야 해.
 - ④ 지민: 세 내각의 이등분선이 만나는 한 점을 원의 중심으로 하고 꼭짓점까지의 거리를 반지름으로 하는 원을 그려야해.
 - ⑤ 장수 : 원의 반지름을 찾았으면 원을 그려야해.

해설

④ 세 내각의 이등분선이 만나는 한 점은 내심으로 원의 중심이 맞지만, 원의 반지름은 내심에서 한 변까지의 거리로 하여야 한다. **15.** 다음 그림에서 점 I, I' 는 각각 \triangle ABD, \triangle ADC 의 내심이다. \angle B = 30°, \angle C = 70° 일 때, \angle IAI' 의 크기를 구하여라.

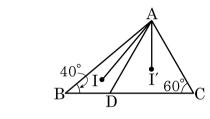


$$\angle BAI = \angle IAD, \angle DAI' = \angle CAI'$$

 $\angle A = 2\angle BAI + 2\angle DAI'$

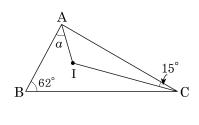
$$\triangle ABC$$
에서 $\angle A=80$ °이므로 $\angle IAI'=\angle BAI+\angle DAI'=rac{1}{2}\angle A=40$ °

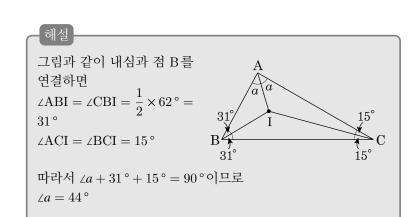
16. 다음 그림에서 점 I, I' 는 각각 \triangle ABD, \triangle ADC 의 내심이다. \angle B = 40°, \angle C = 60° 일 때, \angle IAI' 의 크기는?



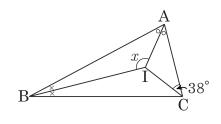
$$\angle IAI' = \frac{1}{2} \angle A = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$$

17. 다음 그림에서 점 I는 △ABC의 내심이다.
 ∠B = 62°, ∠ACI = 15°일 때, ∠a의 크기를 구하여라.





18. 다음 그림에서 점 $I 는 \angle A$ 와 $\angle B$ 의 이등분선의 교점이다. 이 때, $\angle x$ 의 크기를 구하여라.



답:

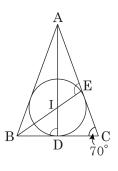
해설

▷ 정답: 128°

 $\angle IAB + \angle IBC = 90\,^{\circ} - 38\,^{\circ} = 52\,^{\circ}$ 따라서 $\triangle IAB$ 에서

 $\angle x = 180^{\circ} - (\angle IAB + \angle IBC)$

 $= 180 \,^{\circ} - 52 \,^{\circ}$ = 128 $^{\circ}$ 19. 다음 그림의 $\triangle ABC$ 에서 점 I는 내심이고 $\angle C = 70$ °이다. \overline{AI} , \overline{BI} 의 연장선이 \overline{BC} , \overline{AC} 와 만나는 점을 각각 D, E라 할 때, $\angle IDB + \angle IEA$ 의 크기를 구하여라.



▶ 답:

해설

▷ 정답: 195°

점 I가 내심이므로 ∠IAB = ∠IAC = ∠a,

∠IBA = ∠IBC = ∠b라고 하면 2∠a + 2∠b + 70° = 180°

$$2(\angle a + \angle b) = 110^{\circ}$$

$$\therefore \ \angle a + \angle b = 55^{\circ}$$

삼각형의 두 내각의 합은 한 외각의 크기와 같으므로 $\angle IDB = \angle a + 70^\circ$, $\angle IEA = \angle b + 70^\circ$

$$\therefore \angle IDB + \angle IEA = \angle a + 70^{\circ} + \angle b + 70^{\circ}$$
$$= (\angle a + \angle b) + 140^{\circ}$$
$$= 55^{\circ} + 140^{\circ}$$
$$= 195^{\circ}$$