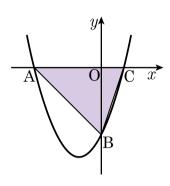

1. 이차함수 $y = -x^2 + 4x$ 의 그래프가 다음 그림과 같을 때, \triangle ABC 의 넓이를 구하면? (점 A 는 꼭짓점)

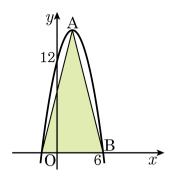
$$\therefore \triangle ABC = \frac{1}{2} \times 4 \times 4 = 8$$


2. 다음 그림은 이차함수 $y = -x^2 + 8x$ 의 그래프이다. $\triangle ABC$ 의 넓이는?

높이는 16이다.
y = -x(x-8) 에서 B(0, 0), C(8, 0) 이므로
$$\overline{BC} = 8$$

$$\therefore (\triangle ABC$$
의 넓이S) = $\frac{1}{2} \times 8 \times 16 = 64$

3. 다음 그림은 $y = x^2 + 2x - 3$ 의 그래프이다. 이 포물선과 x 축과의 교점을 A, C 라 하고, y 축과의 교점을 B 라 할 때, \triangle ABC 의 넓이는?



$$y = x^2 + 2x - 3 = (x + 3)(x - 1) = 0$$

∴ A(-3, 0), C(1, 0)

$$B(0, -3)$$

$$\therefore \triangle ABC = \frac{1}{2} \times \{1 - (-3)\} \times 3 = 6$$

4. 다음 그래프의 식은 $y = -x^2 + bx + 12$ 이다. $\triangle AOB$ 의 넓이는?

① 20

② 24

3 26

4 48

그래프가
$$(6, 0)$$
 을 지나므로 $y = -x^2 + bx + 12$ 에 $(6, 0)$ 을 대입하면

$$0 = -36 + 6b + 12$$

$$b = 4$$

$$y = -x^2 + 4x + 12$$

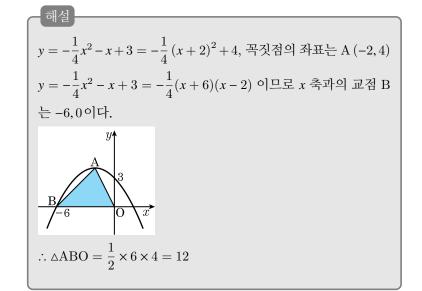
$$= -(x^2 - 4x + 4 - 4) + 12$$

= -(x - 2)² + 16 이므로 A(2, 16)

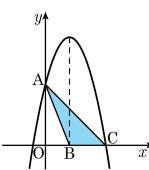
$$\therefore \triangle AOB = \frac{1}{2} \times 8 \times 16 = 64$$

5. 이차함수 $y = -\frac{1}{4}x^2 - x + 3$ 의 그래프의 꼭짓점을 A, 원점을 O, x

축과의 교점을 B 라 할 때, ΔAOB 의 넓이를 구하면? (단,B < 0)

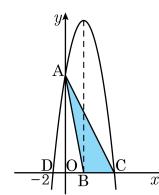

② 6

3


3 9

⑤ 18

6. 다음 그림은 이차함수 $y = -x^2 + 4x + 5$ 의 그래프이다. 점 C, A 는 각각 x 축, v 축과 만나는 점이고, 점 B 는 대칭축과 x 축이 만나는 점이라고 할 때, △ABC 의 넓이를 구하면?



① 6 ②
$$\frac{15}{2}$$
 ③ 8 ④ $\frac{21}{2}$ ⑤ 12

$$y$$
 절편이 5 이므로 $A(0,5)$
 $y = -x^2 + 4x + 5 = -(x - 2)^2 + 9$
축이 $x = 2$ 이므로 $B(2,0)$
 $y = 0$ 일 때 $x^2 - 4x - 5 = 0$
 $(x - 5)(x + 1) = 0$ 이므로 $C(5,0)$

$$(x-5)(x+1) = 0$$
 이므로 $C(5,0)$
 $\triangle ABC$ 의 밑변 $\overline{BC} = 3$, 높이 $\overline{AO} = 5$
 $\therefore \triangle ABC = \frac{1}{2} \times 3 \times 5 = \frac{15}{2}$

7. 다음 그림은 이차함수 $y = -x^2 + 6x + a$ 의 그래프이다. 점 C, A 는 각각 x 축, y 축과 만나는 점이고, 점 B 는 대칭축과 x 축이 만나는 점이다. \triangle ABC 의 넓이가 40 일 때, a 값을 구하면?

$$\therefore a = 16$$

 $\triangle ABC = \frac{1}{2} \times 5 \times a = 40$

 $y = -x^2 + 6x + a$

8. 다음 그림은 $y = -x^2 - 4x + 5$ 의 그래프를 나타낸 것이다. 꼭짓점의 좌표를 A, x 축과 만나는 점을 B, C 라 할 때, \triangle ABC 의 넓이는?

① 30 ② 27

3 24

4 21

⑤ 18

$$y = -x^2 - 4x + 5$$
$$= -(x^2 + 4x + 4 - 4) + 5$$

= -(x+2)²+9 꼭짓점의 좌표는 (-2, 9) 이고

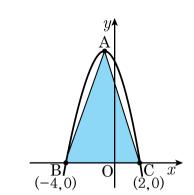
 $-x^2 - 4x + 5 = 0 \Rightarrow x^2 + 4x - 5 = 0$ $(x+5)(x-1) = 0 \Rightarrow x = -5, 1$ 에서 B(-5, 0), C(1, 0) 이다.

따라서 $\triangle ABC = \frac{1}{2} \times 6 \times 9 = 27$ 이다.

9. $y = -x^2 + 9$ 의 그래프와 x 축과의 교점을 A, B 라고 하고, y 축과의 교점을 C 라고 할 때, $\triangle ABC$ 의 넓이를 구하여라.

답:

➢ 정답: 27


점 C 는 꼭짓점이므로 9, 점 A 와 B 는 y = 0 일 때, x 좌표이므로

 $0 = -x^2 + 9$ $\therefore x = \pm 3$

 $\therefore A = \pm 3$ $\therefore A = -3, B = 3$

 $\triangle ABC$ 의 넓이= $\frac{1}{2} \times 6 \times 9 = 27$

10. 다음 그림은 이차함수 $y = -x^2 - 2x + 8$ 의 그래프이다. 꼭짓점을 A, x축과의 교점을 각각 B, C라고 할 때, \triangle ABC의 넓이는?

② 15

③ 20

4 24

327

$$A(-1,9), B(-4,0), C(2,0)$$
이므로 $\Delta \frac{1}{2} \times 6 \times 9 = 27$ 이다.

11. 이차함수 $y = -(x-3)^2 + 4$ 의 그래프에서 꼭짓점을 A, x 축과 만나는 두 점을 각각 B, C 라고 할 때, \triangle ABC 의 넓이를 구하여라.

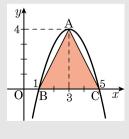
답:

▷ 정답: 8

해설

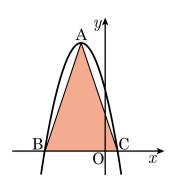
$$y = -(x - y)$$

 $y = -(x - y)$


$$y = -(x-3)^2 + 4$$
 의 그래프에서 꼭짓점은 $(3, 4)$ 이다. $y = -(x-3)^2 + 4$

$$= -(x^2 - 6x + 9) + 4$$
$$= -(x^2 - 6x + 5)$$

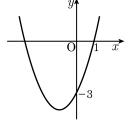
$$=-(x-1)(x-5)$$


따라서 x 축과의 교점은 (1, 0), (5, 0) 이다

$$\therefore$$
 ΔABC의 넓이 $=\frac{1}{2} \times 4 \times 4 = 8$

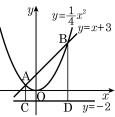
12. 다음 그림은 $y = -x^2 - 4x + 5$ 의 그래프를 나타낸 것이다. 꼭짓점의

좌표를 A. x 축과 만나는 점을 B. C라 할 때. \triangle ABC의 넓이는?


해설
$$y = -x^2 - 4x + 5$$

$$= -(x^2 + 4x + 4 - 4) + 5$$

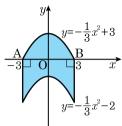
$$= -(x + 2)^2 + 9$$
꼭짓점의 좌표는 $(-2, 9)$ 이고
$$-x^2 - 4x + 5 = 0 \Rightarrow x^2 + 4x - 5 = 0$$
 $(x+5)(x-1) = 0 \Rightarrow x = -5$ 또는 $x = 1$ 에서 $B(-5, 0)$, $C(1, 0)$ 이다.
따라서 $\triangle ABC = \frac{1}{2} \times 6 \times 9 = 27$ 이다.


13. 다음은 이차함수 $y = x^2 + bx + c$ 의 그래프이다. $b^2 - c^2$ 의 값을 구하면?

 $h^2 - c^2 = -5$

해설
$$y = x^2 + bx + c$$
의 그래프는 두 점 $(1, 0), (0, -3)$ 을 지나므로 $c = -3$ 이다. $0 = 1 + b - 3$ $\therefore b = 2$

14. 다음 그림에서 포물선 $y = \frac{1}{4}x^2$ 과 직선 y = x+3 이 만나는 두 점 A, B 에서 직선 y = -2 에 내린 수선의 발을 C, D 라 할 때, 사각형 ABDC 의 넓이를 구하여라.

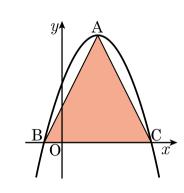

$$x^{2} - 4x - 12 = 0$$
$$(x - 6)(x + 2) = 0$$
$$x = -2 \, \text{\mathref{\ma$$

 $\frac{1}{4}x^2 = x + 3$

A(-2, 1), B(6, 9) 이므로 $\overline{CA} = 3$, $\overline{DB} = 11$, $\overline{CD} = 8$ 이다.

따라서 사각형 ABDC 의 넓이는 $\frac{1}{2} \times (3+11) \times 8 = 56$ 이다.

15. 다음 그림은 $y = -\frac{1}{3}x^2 + 3$, $y = -\frac{1}{3}x^2 - 2$ 의 그래프이다. 이차함수 $y = -\frac{1}{3}x^2 + 3$ 의 그래프가 x 축과 두 점 A, B 에서 만날 때,

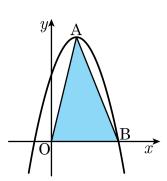


- ▶ 답:
- ▷ 정답: 30

색칠한 부분의 넓이를 구하여라.

색칠한 부분 중 y > 0 인 부분을 잘라 아래에 붙이면 직사각형 모양이 된다. 가로의 길이는 6 이고, $y = -\frac{1}{3}x^2 - 2$ 에 x = 3 를 대입하면 y = -5 이므로 높이는 5 이다. 따라서 색칠한 부분의 넓이는 $6 \times 5 = 30$ 이다.

16. 다음은 *y* = *a*(*x* − 2)² + 6 의 그래프이다. △ABC 의 넓이가 18 일 때, *a* 의 값을 구하면?



①
$$-2$$
 ② $-\frac{5}{3}$ ③ $-\frac{4}{3}$ ④ -1 ⑤ $-\frac{2}{3}$

해설

$$18 = \frac{1}{2} \times \overline{BC} \times 6$$
, $18 = 3$ \overline{BC} , $\overline{BC} = 6$
따라서 점 B 의 좌표는 $(-1, \ 0)$ 이고, C 의 좌표는 $(5, \ 0)$ 이다. $y = a(x-2)^2 + 6$ 에 $(5, \ 0)$ 을 대입하면 $9a + 6 = 0$ 이다. $\therefore a = -\frac{2}{3}$

17. 다음 이차함수 $y = -x^2 + 3x + 4$ 의 그래프에서 점 A 는 꼭짓점, 점 B 는 x 축과의 교점일 때, $\triangle OAB$ 의 넓이는?

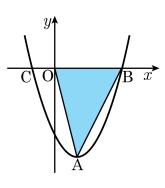
① 3 ② 8

 $3\frac{25}{2}$ 4 $\frac{25}{4}$ 5 $\frac{25}{8}$

$$y = -x^{2} + 3x + 4$$

$$= -\left(x^{2} - 3x + \frac{9}{4} - \frac{9}{4}\right) + 4$$

$$= -\left(x - \frac{3}{2}\right)^{2} + \frac{25}{4}$$
따라서 A $\left(\frac{3}{2}, \frac{25}{4}\right)$


$$y = 0$$
을 대입하면 $x^{2} - 3x - 4 = 0$

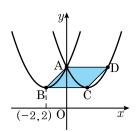
B(4, 0) $\therefore \triangle OAB = \frac{1}{2} \times 4 \times \frac{25}{4} = \frac{25}{2}$

(x+1)(x-4) = 0 이므로 x 절편은 -1,4

18. 다음 포물선 $y = x^2 - 2x - 3$ 의 꼭짓점을 A 라 하고, x 축과의 교점을 B. C 라 하 때 ARO 이 너이는?

B, C 라 할 때, △ABO 의 넓이는?

① 16 ② 8 ③ 12 ④ 6 ⑤ 10


해설
$$y = x^2 - 2x - 3 = (x - 1)^2 - 4$$

A 의 좌표는 (1, -4) 이다. x 축과 교점은 y = 0 일 때이므로 $0 = (x - 1)^2 - 4$ 이다. 따라서 x = -1 또는 x = 3 이다.

B 의 좌표는 (3, 0) 이다.

 $\therefore (\triangle ABO$ 의 넓이) = $\frac{1}{2} \times 3 \times 4 = 6$

19. 다음 그림은 이차함수 $y = \frac{1}{2}(x+2)^2 + 2$ 의 그래프를 x축의 방향으로 4만큼 평행이동 시킨 것이다. 이 때, 색칠한 부분의 넓이를 구하여라. (단, 점 B와 C는 두 포물선의 꼭 짓점이다.)

$$y = \frac{1}{2}(x+2)^2 + 2$$
 의 그래프를 x 축의 방향으로 4만큼 평행이동

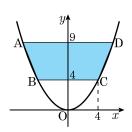
시키면
$$y = \frac{1}{2}(x-2)^2 + 2$$
 이다. 꼭짓점이 $(-2, 2)$ 에서 $(2, 2)$

로 변하였고 점 A 의 좌표는 (0, 4)이므로 평행사변형의 가로의 길이는 4, 높이는 2이다. 따라서 넓이는 $4 \times 2 = 8$ 이다.

20. 다음 포물선 y = x²-2x-3 의 꼭짓점을 A 라 하고, x 축과의 교점을 B, C 라 할 때, △ABO 의 넓이는?
① 16
② 8
③ 12

해설

A 의 좌표는
$$(1, -4)$$
 이다.
 x 축과 교점은 $y = 0$ 일 때이므로
 $0 = (x - 1)^2 - 4$ 이다.
따라서 $x = -1$ 또는 $x = 3$ 이다.
B 의 좌표는 $(3, 0)$ 이다.


 $y = x^2 - 2x - 3 = (x - 1)^2 - 4$

 $\therefore \triangle ABO = \frac{1}{2} \times 3 \times 4 = 6$

21. 일차함수 y = 2x + 5 와 이차함수 $y = x^2 + 6x - 7$ 의 그래프의 교점과 이차함수의 꼭짓점이 이루는 삼각형의 넓이를 구하여라.

▷ 정답: 60

22. 다음 그림에서 사각형 ABCD 는 네 꼭짓점이 이차함수 $y = ax^2$ 의 그래프 위에 있는 사다 리꼴이다. □ABCD 의 넓이를 구하여라.

$$y = ax^2$$
 에 점 C (4, 4) 를 대입하면

$$4 = a \times 4^2$$

$$y = \frac{1}{4}x^2$$
 에서 A, D 의 y 좌표가 9이므로

$$9 = \frac{1}{4}x^2$$

$$x^2 = 36$$
$$x = \pm 6$$

$$\overline{\mathrm{AD}} = 12, \ \overline{\mathrm{BC}} = 8 \ \mathrm{이므로}$$

$$\therefore$$
 ($\Box ABCD$ 의 넓이) = $(12+8) \times 5 \times \frac{1}{2} = 50$