- - ① $x^2 6x 2 = 0$ ② $x^2 3x 4 = 0$
 - $3 2x^2 2x + 2 = 0$ 4 $2x^2 4x + 2 = 0$

다음 이차방정식 중 해가 없는 것은?

(5) $x^2 - x - 12 = 0$

③ $D = (-2)^2 - 4 \times 2 \times 2 < 0$: 해가 없다.

2. 이차방정식 $ax^2 + 2x + a = 0$ 에 대한 다음 설명 중 옳지 <u>않은</u> 것을 고르면?

- ① a = -1 이면 중근을 갖는다.
- ② $a = \frac{1}{2}$ 이면 서로 다른 두 근을 갖는다
- ③ 이차방정식의 근은 $x = \frac{-1 \pm \sqrt{1-a^2}}{a}$ 이다.
- ④ a=3 이면 근을 갖지 않는다
- ⑤a ≥ −1 이면 서로 다른 두 개의 양의 정수를 근으로 갖는다.

판별식 $D = 2^2 - 4a^2 = 4(1 - a^2) = 4(1 + a)(1 - a)$ ① a = -1 이면 D = 0 이 되어 중근을 갖는다.

② $a = \frac{1}{2}$ 이면 D > 0 이 되어 서로 다른 두 근을 갖는다.

③ 근의 공식으로 풀면 $x = \frac{-1 \pm \sqrt{1 - a^2}}{a}$

④ a = 3 이면 D < 0 이 되어 근을 갖지 않는다.

⑤ $a \ge -1$ 이면 $D \ge 0$ 이므로 중근 또는 서로 다른 두 근을 갖는다.

- **3.** 이차방정식 $x^2 3x 1 = 0$ 의 근의 개수를 a 개, $\frac{1}{2}x^2 2x + 2 = 0$ 의 근의 개수를 b 개라 할 때, a b를 구하여라.
 - ▶ 답:
 - ▷ 정답: 1

$$x^2 - 3x - 1 = 0$$
 에서 $D = (-3)^2 - 4 \times 1 \times (-1) = 13 > 0$
서로 다른 두 근을 가지므로 $a = 2$
$$\frac{1}{2}x^2 - 2x + 2 = 0$$
 의 양변에 2 를 곱하면

따라서 a-b=1이다.

 $x^2 - 4x + 4 = 0$, $(x - 2)^2 = 0$ 중근을 가지므로 b = 1

4. 방정식 $(2-x-y)^2-(x^2+y^2)=4$ 를 만족하는 자연수의 순서쌍 (x, y)에 대하여 x^2+y^2 의 값을 구하여라. (단 $x\neq y$)

y-2

$$xy - 2(x + y) = 0$$
, $(x - 2)(y - 2) = 4$
 $x - 2$ 1 2 4 -1 -2 -4

1

 $-4 \mid -2$

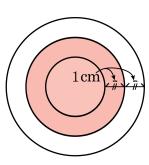
 $(2-x-y)^2 - (x^2+y^2) = 4$.

4

따라서 $x^2 + y^2 = 3^2 + 6^2 = 45$ 이다.

5. 이차방정식 $x^2 + ax - 10 = 0$ 의 해가 정수일 때, 정수 a 의 개수를 구하면?

곱이 -10 인 두 정수는
-10 = (-1) × 10 = 1 × (-10)
= (-2) × 5 = 2 × (-5)
(-1, 10), (1, -10), (-2, 5), (2, -5)
이므로 두 수의 합은 -9, 9, -3, 3이다.
$$a = 9$$
 또는 $a = -9$ 또는 $a = 3$ 또는 $a = -3$
따라서 정수 a 의 개수는 4 이다.


- **6.** 이차방정식 $0.2x^2 0.3x 1 = 0$ 의 두 근 중에서 큰 근을 k 라고 할 때. k 보다 크지 않은 최대의 정수를 구하여라.

 - ▷ 정답: 3

답:

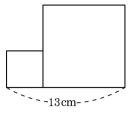
- 해설
- 0.2x² 0.3x 1 = 0 의 양변에 10 을 곱하면 2x² - 3x - 10 = 0
 - $\therefore x = \frac{3 \pm \sqrt{89}}{4}$
- 따라서 $k = \frac{3 + \sqrt{89}}{4}$ 이므로 최대 정수는 3 이다.

7. 다음 그림과 같이 원 세 개가 포개어져 있다. 가장 큰 원의 넓이가 나머지 두 원의 넓이의 합과 같을 때,색칠한 부분의 넓이는?

- ① $12\pi \text{cm}^2$
- (5)

② $13\pi \text{cm}^2$

- $314\pi \text{cm}^2$
- $4 15\pi \text{cm}^2$ $5 16\pi \text{cm}^2$


(r+2) cm , 색칠한 원의 반지름은 (r+1) cm 이 된다. $\pi(r+2)^2 = \pi r^2 + \pi(r+1)^2$ $r^2 - 2r - 3 = 0 \rightarrow (r-3)(r+1) = 0, r = -1, 3 에서 <math>r > 0$ 이므로 r = 3

가장 작은 원의 반지름을 r cm 이라 하면 가장 큰 원의 반지름은

색칠한 원의 반지름은 4cm 이다.

따라서 색칠한 원의 넓이는 $4^2\pi=16\pi({
m \,cm}^2)$ 이다.

8. 다음 그림과 같은 두 정사각형의 넓이의 합이 97cm² 일 때, 작은 정사각형의 둘레의 길이를 구하여라.

▶ 답:

 $\underline{\mathrm{cm}}$

▷ 정답: 16<u>cm</u>

해설

작은 정사각형의 한 변의 길이를 xcm 라고 하면 큰 정사각형의 한 변의 길이는 (13 - x)cm 이다.

 $x^{2} + (13 - x)^{2} = 97$ $2x^{2} - 26x + 169 = 97$

 $x^{2} - 13x + 36 = 0$ (x - 4)(x - 9) = 0

x = 4 또는 x = 9

따라서 작은 정사각형의 한 변의 길이는 4cm, 큰 정사각형의 한 변의 길이는 9cm이다.

따라서 작은 정사각형의 둘레의 길이는 $4 \times 4 = 16$ (cm) 이다.

9. 길이가 5cm 인 선분을 두 부분으로 나누어 그 각각의 선분을 한 변으로 하는 정사각형을 그렸더니 두 정사각형의 넓이의 비가 2 : 3 이 되었다. 작은 정사각형의 한 변의 길이는?

①
$$-10 - \sqrt{6}$$
 ② $-10 + \sqrt{6}$ ③ $-5 + 5\sqrt{6}$ ④ $-5 - 5\sqrt{6}$

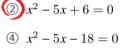
두 변의 길이를
$$x \operatorname{cm}$$
, $(5-x) \operatorname{cm}$ 라 하면 $x^2 : (5-x)^2 = 2 : 3$ $3x^2 = 2(5-x)^2$ $x^2 + 20x - 50 = 0$

0 < x < 5이므로 $x = -10 + 5\sqrt{6}$

 $x = -10 \pm 5\sqrt{6}$

10. 한 변의 길이가 x 인 정사각형에서 한 변의 길이는 20% 늘이고 다른 한 변의 길이는 20% 줄일 때, 새로 만들어지는 직사각형의 넓이의 변화는?
① 1% 줄어든다
② 1% 늘어난다
③ 4% 줄어든다

④ 4% 늘어난다 ⑤ 변화가 없다 ____


해설 처음 정사각형의 넓이는 x^2 새로운 직사각형의 넓이는 $(x+0.2x)(x-0.2x)=1.2x\times0.8x=0.96x^2$ 따라서 새로 만들어지는 직사각형의 넓이는 처음 정사각형의 넓이보다 4% 줄어든다.

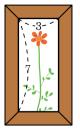
가로 3 cm, 세로 8 cm 의 직사각형이 있다. 가로의 길이를 x cm 만큼 늘리고, 세로의 길이를 x cm 만큼 줄였더니, 원래 직사각형 넓이보다 $6 \,\mathrm{cm}^2$ 만큼 커졌다. 다음 보기 중, x 를 구하는 이차방정식은?

① $x^2 + 5x + 6 = 0$

 $3 \quad x^2 - 5x - 6 = 0$

(5) $x^2 + 5x - 18 = 0$

$$4) x^2 - 5x - 18 = 0$$


$$3 \times 8 + 6 = (3+x)(8-x)$$

$$x^2 - 5x + 6 = 0$$

12. 다음 그림과 같이 가로가 3, 세로가 7 인 직사각형 모양의 사진이 있다. 이 사진의 둘레에 폭이 일정하게 종이를 붙일 때, 종이의 넓이가 24 라고 하면, 종이의 폭은?

3

4

종이의 폭을
$$x$$
라 하면, 종이와 액자의 넓이의 합은 $(3+2x)(7+2x)=21+24$ $4(x^2+5x-6)=0$ $(x+6)(x-1)=0$ $x>0$ 이므로 $x=1$

13. 포물선 $y = -2x^2 + 2mx - 6$ 의 축의 방정식이 x = 1 일 때, m 의 값을 구하면?

① 1 ②2 ③ 3 ④ 4 ⑤ 5

축의 방정식이
$$x = 2$$
 이므로
 $y = -2x^2 + 2mx - 6$
 $= -2(x - 1)^2 + q$
 $= -2x^2 + 4x - 2 + q$
∴ $2m = 4$, $m = 2$

14. 다음 그래프처럼 꼭짓점이 점(1, -2)를 지날 때. 올바른 이차함수의 식을 고른 것은? ① $y = 6x^2 - 11x - 2$ $y = 6x^2 - 12x + 4$

$$y = 6x^{2} - 12x + 4$$

$$y = -2x^{2} - 12x + 4$$

$$y = a(x-1)^2 - 2$$

꼭짓점이 점(1, -2) 를 지나므로

또한, 점(0, 4) 를 지나므로 4 = a - 2 : a = 6

$$4 = a - 2 \quad \therefore a = 6$$
$$\therefore v = 6x^2 - 12x + 4$$

15. 다음 중 이차함수 $y = \frac{1}{2}x^2 + ax + 9$ 의 축의 방정식이 x = -3 일 때, 꼭짓점의 좌표를 구하여라.

$$ightharpoonup$$
 정답: $\left(-3, \frac{9}{2}\right)$

$$y = \frac{1}{2}x^2 + ax + 9$$
 의 축이 $x = -3$ 이므로
 $y = \frac{1}{2}(x+3)^2 + q$ $\therefore a = 3, q = \frac{9}{2}$

$$y = \frac{1}{2}(x+3)^2 + q$$

= $\frac{1}{2}(x^2 + 6x + 9) + q$

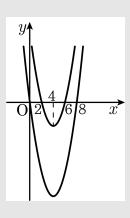
$$y = \frac{1}{2}(x+3)^{2} + q$$

$$= \frac{1}{2}(x^{2} + 6x + 9) + q$$

$$= \frac{1}{2}x^{2} + 3x + \frac{9}{2} + q$$

$$y = \frac{1}{2}x^{2} + ax + 9 = \frac{1}{2}x^{2} + 3x + \frac{9}{2} + q$$

따라서 꼭짓점의 좌표는 $\left(-3, \frac{9}{2}\right)$ 이다.


16. 이차함수 $y = x^2 - 8x + 12$ 를 y 축의 방향으로 p 만큼 평행이동하면 x 축과 만나는 두 점 사이의 거리가 처음의 두 배가 된다고 한다. 이 때, p 의 값은?

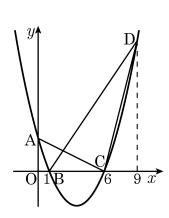
해설

 $y = x^2 - 8x + 12 = (x - 2)(x - 6)$ 이므로 x 축과 만나는 두 점은 (2,0), (6,0) 이고 축은 x = 4 이다.

이 그래프가 y축의 방향으로만 평행이동했으므로 그래프의 축은 변하지 않은 상태에서 x축과 만나는 두 점 사이의 거리가 두 배가 되려면 다음 그림처럼 좌우로 각각 2 만큼 늘어나서 (0,0), (8,0)을 지나게 된다.

따라서 평행이동한 식은 $y=x(x-8)=x^2-8x$ 이는 $y=x^2-8x+12$ 를 y축의 방향으로 -12 만큼 평행이동한 식이므로 p=-12 이다.

17. 이차함수 $y = x^2 - 4x + 1$ 의 그래프를 x 축의 방향으로 2 만큼 평행이동하면 점 (3, m) 을 지난다. m 의 값을 구하면?


① 6 ② 2 ③ -2 ④ -4 ⑤ -6

18. 이차함수 $y = -\frac{1}{3}x^2$ 의 그래프를 평행이동하였더니 꼭짓점의 좌표가

(3, -2) 가 되었다고 할 때, $y = -\frac{1}{3}x^2$ 위에 있는 점 (-1, m) 은 어떤 점으로 옮겨지는지 구하여라.

해설
$$(-1, m) \cap y = -\frac{1}{3}x^2 \text{ 위의 점이므로 } m = -\frac{1}{3}$$

$$(-1, -\frac{1}{3}) \stackrel{\circ}{=} x \stackrel{*}{=} 9 \text{ 방향으로 3 만큼, } y \stackrel{*}{=} 9 \text{ 방향으로 -2 만큼}$$
 평행이동하면 $\left(2, -\frac{7}{3}\right)$ 이다.

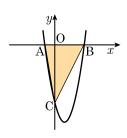
19. 다음 그림은 이차함수 $y = ax^2 + bx + c$ 의 그래프이다. 삼각형 ABC 의 넓이가 $\frac{15}{2}$ 일 때, 삼각형 BCD 의 넓이를 구하여라.

▶ 답:

▷ 정답: 30

$$\triangle ABC = \frac{1}{2} \times (6-1) \times c = \frac{15}{2}$$
 이다.

c=3, 즉 A(0,3) 이다.


$$c = 3$$
, $= A(0,3)$ ord.
 $y = ax^2 + bx + 3 = a(x-1)(x-6) = ax^2 - 7ax + 6a$

$$6a = 3, \ a = \frac{1}{2}, \ b = -\frac{7}{2}$$
 이다.

$$y = \frac{1}{2}x^2 - \frac{7}{2}x + 3$$
 이므로 D(9,12) 이다.

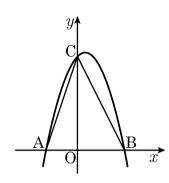
$$\triangle BCD = \frac{1}{2} \times (6-1) \times 12 = 30$$

 20. 이차함수 y = 2(x-1)²-8 의 그래프가 x 축과 만나는 점을 각각 A, B 라 하고, y 축과의 교점 을 C 라 할 때. ΔABC 의 넓이를 구하여라.

➢ 정답: 12

$$i) x 축과의 교점은 $y = 0$ 일 때 x 의 값이므로 $2(x-1)^2 - 8 = 0$$$

$$2x^{2} - 4x - 6 = 2(x^{2} - 2x - 3)$$
$$= 2(x - 3)(x + 1) = 0$$


$$= 2(x-3)(x+3)$$

$$\therefore x = 3 \stackrel{\leftarrow}{\Sigma} = -1$$

따라서 A의 좌표는 (-1,0) B의 좌표는 (3,0) 이다.
ii) v 축과의 교점은
$$x = 0$$
일 때 v의 값이므로

iii)
$$\triangle ABC = 4 \times 6 \times \frac{1}{2} = 12$$

21. 이차함수 *y* = -*x*² + *x* + 6 의 그래프가 다음 그림과 같을 때, ΔABC 의 넓이를 구하여라.

$$y = -x^2 + x + 6$$
 의 C 의 좌표 $(0,6)$
 $-x^2 + x + 6 = 0$, $(x - 3)(x + 2) = 0$

$$\therefore x = 3$$
 또는 $x = -2$ A(-2,0), B(3,0) 이므로

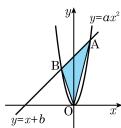
$$\triangle$$
ABC 의 넓이는 $5 \times 6 \times \frac{1}{2} = 15$

22. 다음 그림에서 사각형 ABCD 는 네 꼭짓점이 이차함수 $y = ax^2$ 의 그래프 위에 있는 사다리꼴이다. 사각형 ABCD 의 넓이를 구하여라.

$$\begin{array}{c|c}
 & y \\
\hline
 & 1 \\
\hline
 & A \\
 & A \\
\hline
 & A$$

$$ightharpoonup$$
 정답: $4 + 4\sqrt{5}$

해설
$$y = ax^{2} \text{ 가 점 } (-1,-1) 을 지나므로$$

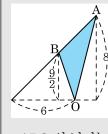

$$-1 = a, a = -1$$

$$y = -x^{2}, y = -5 일 때, x = \pm \sqrt{5}$$

$$A (-1,-1), B (-\sqrt{5},-5)$$

$$C (\sqrt{5},-5), D (1,-1)$$
(□ABCD 의 넓이)
$$= (2+2\sqrt{5}) \times (5-1) \times \frac{1}{2} = 4+4\sqrt{5}$$

23. 이차함수 $y = ax^2$ 의 그래프와 직선 y = x + b 가 점 A (2, 8) 과 점 B 에서 만날 때, \triangle ABO 의 넓이를 구하여라.


$$\triangleright$$
 정답: $\frac{21}{2}$

해설
$$y = ax^2$$
 에 점 $(2, 8)$ 을 대입, $8 = 4a$, $a = 2$ \therefore $y = 2x^2$ $y = x + b$ 에 점 $(2, 8)$ 을 대입, $8 = 2 + b$, $b = 6$ \therefore $y = x + 6$ $y = 2x^2$ 과 $y = x + 6$ 의 교점을 구하면 $2x^2 = x + 6$ $2x^2 - x - 6 = 0$

$$(2x+3)(x-2) = 0$$

$$\therefore x = -\frac{3}{2} \pm \frac{1}{2} x = 2$$

$$\therefore B\left(-\frac{3}{2}, \frac{9}{2}\right)$$

$$\triangle ABO$$
 의 넓이는 $\frac{1}{2} \times 6 \times 8 - \frac{1}{2} \times 6 \times \frac{9}{2} = \frac{21}{2}$ 이다.

24. $y = 2x^2$ 의 그래프를 x 축의 방향으로 -3 만큼, y 축의 방향으로 -2 만큼 평행이동시킨 그래프의 x 절편과 y 절편을 연결한 삼각형의 넓이를 구하면?