1.
$$\sqrt{(\sqrt{3}-1)^2} + \sqrt{(\sqrt{3}-2)^2}$$
 을 계산하여라.

해설

$$\sqrt{3}$$
 - $\sqrt{3}$ -

$$\sqrt{3}-1>0$$
 이므로 $\sqrt{(\sqrt{3}-1)^2}=\sqrt{3}-1$
 $\sqrt{3}-2<0$ 이므로 $\sqrt{(\sqrt{3}-2)^2}=-(\sqrt{3}-2)=-\sqrt{3}+2$

$$\therefore \sqrt{(\sqrt{3} - 1)^2} + \sqrt{(\sqrt{3} - 2)^2}$$

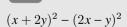
$$= \sqrt{3} - 1 - \sqrt{3} + 2 = 1$$

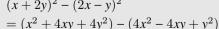
①
$$-3x^2 + 3y^2$$

$$3 x^2 + 2xy + y^2$$

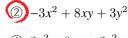
$$3x^2 - 8xy + 3y^2$$

 $(x+2y)^2 - (2x-y)^2$ 을 전개하면?

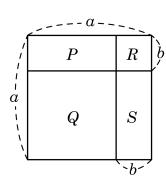




 $=-3x^2+8xy+3y^2$



3. 다음 그림과 같이 한 변의 길이가 a 인 정사각형을 네 부분으로 나눈 넓이를 각각 $P,\ Q,\ R,\ S$ 라 할 때, Q+R을 $a,\ b$ 로 나타낸 것은?



①
$$a^2 - 2ab + 2b^2$$
 ② $a^2 - 2ab + b^2$ ③ $a^2 - ab + b^2$

해설
$$(Q 의 넓이) = (a-b)^2 = a^2 - 2ab + b^2$$

$$(R 의 넓이) = b^2$$

따라서, Q + R 의 넓이는 $a^2 - 2ab + 2b^2$ 이다.

 $10x^2 + ax - 6 = (2x - b)(5x + 2)$ 로 인수 분해될 때, a + b 의 값을 구하면?

③ -14 ④ 14

 \bigcirc -11

(2) 11

해설
$$10x^2 + ax - 6 = (2x - b)(5x + 2)$$
이므로 $-2b = -6$, 즉 $b = 3$

 $10x^2 + ax - 6 = (2x - b)(5x + 2)$ 이므로 -2b = -6, 즉 b = 3이다. 따라서 a = 4 - 15 = -11 이므로 a + b = -8 이다.

5. 평행사변형의 넓이가 $2x^2 + 5x + 2$ 이고 밑변의 길이가 2x + 1 일 때, 높이는?

해설
$$2x^2 + 5x + 2 = (2x+1)(x+2)$$

따라서 높이는 x + 2 이다.

(1) x + 2

(4) x - 1

②
$$x-2$$
 ③ $2x-1$ ⑤ $x+1$

6. (x − 1)(x − 3)(x − 5)(x − 7) + k 가 완전제곱식이 되도록 상수 k 의 값은?

$$(x-1)(x-7)(x-3)(x-5) + k$$

$$= (x^2 - 8x + 7)(x^2 - 8x + 15) + k$$

$$x^2 - 8x = A 로 높으면,$$

$$(A+7)(A+15) + k$$

$$= A^2 + 22A + 105 + k = (A+11)^2$$

$$\therefore 105 + k = 11^2 = 121$$

$$\therefore k = 16$$

①
$$x-1$$

②
$$x^2 - 1$$

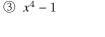
③ $x^8 - 1$

해설

$$x^{8} - 1 = (x^{4} - 1)(x^{4} + 1)$$

$$= (x^{2} - 1)(x^{2} + 1)(x^{4} + 1)$$

$$= (x - 1)(x + 1)(x^{2} + 1)(x^{4} + 1)$$



8. $x^2 - 2xy + y^2 + 2x - 2y - 3$ 을 인수분해하면?

①
$$(x-y-3)(x-y+1)$$
 ② $(x+2y+3)(x-y-1)$

$$(x-y+3)(x-2y+1)$$

주어진 식을
$$x$$
에 관해 정리하면 $x^2 + (2-2y)x + y^2 - 2y - 3$ $= x^2 + (2-2y)x + (y+1)(y-3)$ $= \{x - (y+1)\}\{x - (y-3)\}$ $= (x-y-1)(x-y+3)$

).
$$\sqrt{196} \div \sqrt{(-2)^2} + \sqrt{(-3)^4} = x$$
, $2 \times \sqrt{4^2 \times (-2)^4} - \sqrt{225} = y$, $\sqrt{0.64} - \sqrt{0.01} = z$ 일 때, $x + y + 10z$ 의 값을 구하여라.

$$\begin{vmatrix} x = \sqrt{196} \div \sqrt{(-2)^2} + \sqrt{(-3)^4} \\ = 14 \div 2 + 9 \end{vmatrix}$$

$$= 7 + 9 = 16$$

$$= 7 + 9 =$$

$$= 2 \times \sqrt{4^2}$$

$$= 7 + 9 = 10$$
$$= 2 \times \sqrt{4^2}$$

 $y = 2 \times \sqrt{4^2 \times (-2)^4} - \sqrt{225}$

$$\times \sqrt{4^2} \times$$
 $\times 16 - 15$

$$= 2 \times 16 - 15$$

= $32 - 15 = 17$

$$z = \sqrt{0.64} - \sqrt{0.01} = 0.8 - 0.1 = 0.7$$

따라서 $x + y + 10z = 16 + 17 + 7 = 40$ 이다.

10. $\sqrt{19+x}$ 와 $\sqrt{120x}$ 가 모두 자연수가 되도록 하는 가장 작은 자연수 x를 구하여라.

 $5, 2^3 \times 3 \times 5, \cdots$

① ①에서 가장 작은 자연수 x는 30 이다.

11.
$$0 < a < 1$$
 일 때, 다음 중 가장 큰 값은?

①
$$a^2$$

$$\sqrt{\left(\frac{1}{a}\right)^2}$$

$$\sqrt[3]{\frac{1}{\sqrt{a}}}$$

$$\sqrt[3]{a}$$

해설
$$0 < a < 1$$
 일 때 $a = \frac{1}{4}$ 라 하면

①
$$a^2 = \left(\frac{1}{4}\right)^2 = \frac{1}{16}$$

$$\sqrt[4]{(-a)^2} = \sqrt{\left(-\frac{1}{4}\right)^2} = \sqrt{\frac{1}{16}} = \frac{1}{4}$$

12. $6 < \sqrt{3n} < 8$ 을 만족하는 자연수 n 의 값 중 최댓값을 a, 최솟값을 b 라고 할 때. a - b 의 값을 구하여라.

$$6 < \sqrt{3n} < 8 \to 36 < 3n < 64 \to 12 < n < \frac{64}{3}$$

$$\stackrel{\text{Z}}{=} a = 21, \ b = 13 \quad \therefore a - b = 8$$

13. 임의의 실수
$$a$$
, b 에 대하여 \bigstar 를 $a \bigstar b = ab - a - b - 3$ 이라 할 때,

$$\sqrt{5} \star \frac{3\sqrt{5}}{5}$$
 의 값은?

াব
$$\sqrt{5} \star \frac{3\sqrt{5}}{5} = \sqrt{5} \times \frac{3\sqrt{5}}{5} - \sqrt{5} - \frac{3\sqrt{5}}{5} - \frac{3$$

$$\sqrt{5} \star \frac{3\sqrt{5}}{5} = \sqrt{5} \times \frac{3\sqrt{5}}{5} - \sqrt{5} - \frac{3\sqrt{5}}{5} - 3$$

$$= 3 - \sqrt{5} - \frac{3\sqrt{5}}{5} - 3$$

$$= -\frac{8}{5}\sqrt{5}$$

14. 다음 중 세 수 p, q, r 를 수직선에 나타내려고 한다. 바르게 연결된 것은?

$$p = \sqrt{3} + \sqrt{5}$$
, $q = \sqrt{3} - 2$, $r = \sqrt{5} + 2$

①
$$A = p$$
, $B = q$, $C = r$ ② $A = q$, $B = p$, $C = r$

③
$$A = q$$
, $B = p$, $D = r$ ④ $B = p$, $C = q$, $D = r$

위치한다.

(1)
$$p - q = \sqrt{3} + \sqrt{5} - (\sqrt{3} - 2) = \sqrt{5} + 2 > 0 : p > q$$

(1)
$$p - q = \sqrt{3} + \sqrt{3} - (\sqrt{5} - 2) = \sqrt{3} + 2 > 0$$
.. $p > q$
(2) $q - r = \sqrt{3} - 2 - (\sqrt{5} + 2) = \sqrt{3} - \sqrt{5} - 4 < 0$.. $r > q$

$$r = \sqrt{5} + 2$$
 에서 $\sqrt{5}$ 의 범위는 $2 < \sqrt{5} < 3$ 이므로 $4 < r < 5$ 이다.

따라서 $r \in C$, $p \in B$ 에 위치한다.

15. $(x-2y-1)^2$ 을 전개하였을 때 x^2 의 계수를 A , x 의 계수를 B , 상수항을 C 라 할 때, A+B+C 의 값을 구하여라.

(x-2y-1)(x-2y-1)

$$= x^{2} - 2xy - x - 2xy + 4y^{2} + 2y - x + 2y + 1$$

$$= x^{2} - 4xy + 4y^{2} - 2x + 4y + 1$$

 x^2 의 계수는 1 , x 의 계수는 -2 , 상수항은 1 이다. 따라서 A = 1 , B = -2 , C = 1 이다. $\therefore A + B + C = 1 - 2 + 1 = 0$

16.
$$(a-b+3)^2 - (a+b+3)^2$$
을 간단히 한 것은?

①
$$-4b(a-3)$$

②
$$-4a(b+3)$$

③ $-4b(a+3)$

3 -8b(a+3)

$$(4) -4a(b-3)$$

$$(a-b+3)^2 - (a+b+3)^2$$

= $\{(a-b+3) + (a+b+3)\}$

$${(a-b+3) - (a+b+3)}= (-2b) (2a+6)$$

$$= (-2b)(2a+6)$$

= $-4b(a+3)$