다음 중 옳은 것은? 1.

- ① a > 0 일 때, a 의 제곱근은 \sqrt{a} 이다. ② $\sqrt{16}$ 의 제곱근은 ± 2 이다.
- ③ 1.6 의 제곱근은 ±0.4 이다.
- ④ 0의 제곱근은 없다.
- ⑤ a < 0 일 때, $\sqrt{(-a)^2} = a$ 이다.

① a > 0 일 때, a 의 제곱근은 $\pm \sqrt{a}$ 이다.

해설

- ③ 1.6 의 제곱근은 $\pm\sqrt{1.6}$ 이다.
- ④ 0 의 제곱근은 0 이다. ⑤ a < 0 일 때, $\sqrt{(-a)^2} = -a$ 이다.

2. 다음 중 옳지 <u>않은</u> 것은 무엇인가?

- ① a > 0 일 때, $\sqrt{9a^2} = 3a$ ② a < 0 일 때, $-\sqrt{4a^2} = 2a$
- ③a < 0 일 때, $-\sqrt{(-5a)^2} = -5a$
- ④ a > 0 일 때, $\sqrt{2a^2} = \sqrt{2}a$
- ⑤ a > 0 일 때, $-\sqrt{25a^2} = -5a$

해설

 $-\sqrt{(-5a)^2} = -\sqrt{25a^2} = -|5a| = 5a$

③ a < 0 일 때,

- **3.** a > 0 일 때, 다음 중 옳은 것을 모두 골라라.
 - ⊙ 0 의 제곱근은 0 뿐이다. ⓒ 음수의 제곱근은 1개이다.
 - © 제곱근은 항상 무리수이다.

 - \bigcirc $-\sqrt{a}$ 는 -a 의 음의 제곱근이다.

 - ▶ 답:

▶ 답:

▷ 정답: ②

▷ 정답: ⑤

- 해설 _ © 음수의 제곱근은 없다.
- ⓒ 제곱근은 무리수일 수도 있고 유리수일 수도 있다.
- $\bigcirc -\sqrt{a}$ 는 a 의 음의 제곱근이다.

- 4. 다음 중 대소 비교를 올바르게 한 것은?
 - ① $\sqrt{2} + 1 = 3$ ③ $1 > \sqrt{1}$
- ② $\sqrt{2} < 1.4$
- **9** 1 >
- $\sqrt{4}$ $\sqrt{15}$ < 14

- ① $\sqrt{2} + 1 < 3$
- ② $\sqrt{2} > 1.4$ ③ $1 = \sqrt{1}$

다음 중 두 실수의 대소 관계로 옳은 것은? **5**.

 $\bigcirc 3 < \sqrt{3} + 1$

 \bigcirc $\sqrt{3} + 1 < \sqrt{2} + 1$

© $\sqrt{15} + 1 < 4$ @ $4 - \sqrt{7} < \sqrt{17} - \sqrt{7}$

 $\textcircled{1} \ \textcircled{0}, \ \textcircled{L} \qquad \textcircled{2} \ \textcircled{0}, \ \textcircled{e} \qquad \textcircled{3} \ \textcircled{L}, \ \textcircled{E} \qquad \textcircled{4} \ \textcircled{E}, \ \textcircled{e} \qquad \textcircled{9} \ \textcircled{e}, \ \textcircled{e}$

 $\bigcirc 3 - (\sqrt{3} + 1) = 2 - \sqrt{3} = \sqrt{4} - \sqrt{3} > 0$ $3 > \sqrt{3} + 1$ (L) $\sqrt{3} + 1 - (\sqrt{2} + 1) = \sqrt{3} - \sqrt{2} > 0$

 $\therefore \sqrt{3} + 1 > \sqrt{2} + 1$ \bigcirc $\sqrt{15} + 1 - 4 = \sqrt{15} - 3 = \sqrt{15} - \sqrt{9} > 0$

 $\therefore \sqrt{15} + 1 > 4$

 $\stackrel{\text{\tiny (2)}}{=} 4 - \sqrt{7} - (\sqrt{17} - \sqrt{7}) = 4 - \sqrt{17}$ $= \sqrt{16} - \sqrt{17} < 0$

 $\therefore 4 - \sqrt{7} < \sqrt{17} - \sqrt{7}$ \bigcirc $\sqrt{11} - \sqrt{7} - (-\sqrt{7}) = \sqrt{11} > 0$

 $\therefore \quad \sqrt{11} - \sqrt{7} > -\sqrt{7}$

따라서 옳은 것은 ②, ②이다.

- 6. 다음 중 옳은 것은 모두 몇 개인가?

 - ① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

 - ① $3 \sqrt{3} \left(-\sqrt{3}\right) = 3 > 0$ $\therefore 3 \sqrt{3} > -\sqrt{3}$ ② $1 \sqrt{\frac{1}{2}} \left(-\sqrt{\frac{2}{3}} + 1\right) = \sqrt{\frac{2}{3}} \sqrt{\frac{1}{2}} > 0$
 - $\therefore 1 \sqrt{\frac{1}{2}} > -\sqrt{\frac{2}{3}} + 1$

7. $(x-4)(x-2)(x+1)(x+3)-25 = Ax^4 + Bx^3 + Cx^2 + Dx + E \supseteq$ 때, A + B + C + D + E의 값을 구하면?

① -2③ 0 ④ 1 ⑤ 2

해설

(x-4)(x-2)(x+1)(x+3) - 25 $= \{(x-4)(x+3)\}\{(x-2)(x+1)\} - 25$ $= (x^2 - x - 12)(x^2 - x - 2) - 25$ $x^2 - x = t$ 로 치환하여 정리하면 $(t-12)(t-2) - 25 = t^2 - 14t - 1$ $x^2 - x = t$ 를 대입하면 $x^4 - 2x^3 + x^2 - 14x^2 + 14x - 1 = x^4 - 1$ $2x^3 - 13x^2 + 14x - 1$ 따라서 A+B+C+D+E=1-2-13+14-1=-1이다.

8. (x+1)(x+2)(x-3)(x-4)의 전개식에서 x^2 의 계수는?

① -12 ② -7 ③ 3 ④ 6 ⑤ 8

(x+1)(x+2)(x-3)(x-4)
= {(x+1)(x-3)}{(x+2)(x-4)}
= (x^2 - 2x - 3)(x^2 - 2x - 8)
x^2 이 나오는 항은 $-8x^2 + 4x^2 - 3x^2$ 이다.
따라서 x^2 의 계수는 -7이다.

9. (x-4)(x-3)(x+2)(x+3)의 전개식에서 x^2 의 계수와 상수항의 합을 구하여라.

▶ 답:

➢ 정답: 55

해설

(x-4)(x-3)(x+2)(x+3)

 $= \{(x-4)(x+3)\}\{(x-3)(x+2)\}$ $= (x^2 - x - 12)(x^2 - x - 6)$ $x^2 = \frac{1}{2} \cdot \frac{1}{2}$

 x^2 이 나오는 항은 $-6x^2 + x^2 - 12x^2 = -17x^2$ 이다. 따라서 x^2 의 계수는 -17이고 상수항은 72이므로 x^2 의 계수와

상수항의 합은 −17 + 72 = 55이다.

10. $4x^2 - 24xy + 36y^2 - 16$ 을 두 일차식의 곱으로 인수분해할 때, 두 일차식의 합을 구하여라.

답:

해설

 ▶ 정답: 4x - 12y

 $\left(\stackrel{\angle}{\Xi} \stackrel{\angle}{A} \right) = 4 \left(x^2 - 6xy + 9y^2 \right) - 16$ $= 4 \left(x - 3y \right)^2 - 16$ $= \left(2x - 6y + 4 \right) \left(2x - 6y - 4 \right)$ $\therefore \left(2x - 6y + 4 \right) + \left(2x - 6y - 4 \right) = 4x - 12y$

11. $a^2 + 25b^2 - 10ab - 16$ 을 두 일차식의 곱으로 인수분해할 때, 두 일차식의 합을 구하여라.

 ▶ 답:

 ▷ 정답:
 2a - 10b

(준식)

해설

 $= a^{2} - 10ab + 25b^{2} - 16$ $= (a - 5b)^{2} - 16$

= (a - 5b + 4)(a - 5b - 4)

 $\therefore (a-5b+4) + (a-5b-4) = 2a-10b$

- **12.** $a^2 b^2 2b 1$ 이 a의 계수가 1인 두 일차식의 곱으로 인수분해 될 때, 두 일차식의 합은?

 - $\textcircled{9} 2a \qquad \qquad \textcircled{9} \ a+2b+1$
 - ① 2(a-b) ② 2a-2 ③ a

해설

 $a^2 - b^2 - 2b - 1 = a^2 - (b^2 + 2b + 1)$ $=a^2-(b+1)^2$ =(a+b+1)(a-b-1)따라서 세 항의 합은

(a+b+1) + (a-b-1) = 2a이다.

13. $f(x) = \sqrt{x+2} - \sqrt{x+1}$ 일 때, $f(0)+f(1)+f(2)+\cdots+f(99)+f(100)$ 의 값을 구하면?

① -1 ② $\sqrt{101} - 1$ ⑤ $\sqrt{102}$

 $\sqrt{3}\sqrt{102} - 1$

해설

 $f(0) = \sqrt{2} - \sqrt{1} = -1 + \sqrt{2}$ $f(1) = \sqrt{3} - \sqrt{2} = -\sqrt{2} + \sqrt{3}$ $f(2) = \sqrt{4} - \sqrt{3} = -\sqrt{3} + \sqrt{4} \cdots$ $f(99) = \sqrt{101} - \sqrt{100} = -\sqrt{100} + \sqrt{101}$ $f(100) = \sqrt{102} - \sqrt{101} = -\sqrt{101} + \sqrt{102}$ $\therefore f(0) + f(1) + f(2) + \dots + f(99) + f(100)$ $= -1 + \sqrt{2} - \sqrt{2} + \sqrt{3} + -\sqrt{3} + \sqrt{4} + \cdots - \sqrt{100} + \sqrt{101} \sqrt{101} + \sqrt{102}$ $= -1 + (\sqrt{2} - \sqrt{2}) + (\sqrt{3} - \sqrt{3}) + (\sqrt{4} + \dots - \sqrt{100}) + (\sqrt{101} - \sqrt{100}) + (\sqrt{100} - \sqrt{100}) + (\sqrt{$ $\sqrt{101}) + \sqrt{102}$ $= -1 + (0) + (0) + (0) + \sqrt{102}$

 $= -1 + \sqrt{102}$

14.
$$\sqrt{(3-2\sqrt{2})^2} - \sqrt{(2\sqrt{2}-3)^2}$$
 을 간단히 하면?

 $\bigcirc 0$ $\bigcirc -6 + 4\sqrt{2}$

① $6-4\sqrt{2}$ ② $-4\sqrt{2}$ ③ 6

 $3 > 2\sqrt{2}$ 이므로

 $\sqrt{(3-2\sqrt{2})^2} - \sqrt{(2\sqrt{2}-3)^2}$ $= |3-2\sqrt{2}| - |2\sqrt{2}-3|$ $= 3-2\sqrt{2}+2\sqrt{2}-3$

15.
$$f(x) = \sqrt{x+1} - \sqrt{x}$$
 일 때, $f(1) + f(2) + f(3) + \cdots + f(39) + f(40)$ 의 값을 구하면?

 $4 \sqrt{41} + 1$

① $\sqrt{40} - 1$ ② $\sqrt{40} + 1$

 $\sqrt[3]{\sqrt{41}} - 1$

해설

 $f(1) = \sqrt{2} - 1 = -1 + \sqrt{2}$ $f(2) = \sqrt{3} - \sqrt{2} = -\sqrt{2} + \sqrt{3}$

 $f(3) = \sqrt{4} - \sqrt{3} = -\sqrt{3} + \sqrt{4} \cdots$

 $f(39) = \sqrt{40} - \sqrt{39} = -\sqrt{39} + \sqrt{40}$ $f(40) = \sqrt{41} - \sqrt{40} = -\sqrt{40} + \sqrt{41}$

 $\therefore f(1) + f(2) + f(3) + \dots + f(39) + f(40)$ $= (-1 + \sqrt{2}) + (-\sqrt{2} + \sqrt{3}) + (-\sqrt{3} + \sqrt{4}) + \dots + (-\sqrt{39} +$

 $\sqrt{40}$) + $(-\sqrt{40} + \sqrt{41}) = -1 + \sqrt{41}$

16. 다음 제곱근표를 이용하여 $\sqrt{55}$ 의 값을 구하면?

① 5.93 ② 7.56 ③ 7.50

	7	U	1	Z	3	4	Э
	2.0	1.41	1.41	1.42	1.42	1.42	1.43
	2.1	1.44	1.45	1.45	1.45	1.46	1.46
	2.2	1.48	1.48	1.49	1.49	1.49	1.50
	2.3	1.51	1.52	1.52	1.52	1.53	1.53
	2.4	1.54	1.55	1.55	1.55	1.56	1.56
•							

해설

47.40

⑤ 6.19

 $\sqrt{55} = \sqrt{2.2 \times 25} = 5\sqrt{2.2} = 5 \times 1.48 = 7.40$

17. 다음 제곱근표를 이용하여 $\sqrt{2004}$ 의 값을 구하면?

7	U	1	4	ว	4
3.0	1.732	1.735	1.738	1.741	1.744
4.0	2.000	2.002	2.005	2.007	2.010
5.0	2.230	2.238	2.241	2.243	2.245

① 44.72 ② 34.64 ③ 34.70 ④ 34.76

3 44.76

 $\sqrt{2004} = \sqrt{4 \times 501} = 2\sqrt{501}$ $= 2 \times \sqrt{5.01 \times 100}$

 $=20\sqrt{5.01}$

주어진 표에서 5.01 = 2.238 ∴ 20×2.238 = 44.76

해설

18. 다음의 표는 제곱근표의 일부이다. 이 표를 이용하여 $\frac{1}{\sqrt{2}} \left(\sqrt{3} - \frac{9}{\sqrt{3}} \right)$ 의 값을 구하면?

	U	1	Z
1	1.000	1.005	1.010
2	1.414	1.418	1.421
3	1.732	1.735	1.738
4	2	2.002	2.005
5	2.236	2.238	2.241
6	2.449	2.452	2.454
7	2.646	2.648	2.650
8	2.828	2.830	2.832

4 -2.449 **5** 2.449

① 1.414 ② -1.732 ③ 1.732

$$\frac{\sqrt{3}}{\sqrt{2}} - \frac{3\sqrt{3}}{\sqrt{2}} = -\frac{2\sqrt{3}}{\sqrt{2}} = -\sqrt{6} = -2.449$$