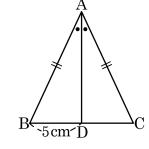

1. 다음 그림과 같은 ΔABC에서 $\overline{AB} = \overline{AC}$ 일 때, 2x + 2y의 크기를 구하여라.

➢ 정답: 180 º


 $\triangle ABC$ 는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이므로 $\angle ABC = \angle C = \angle x$

해설

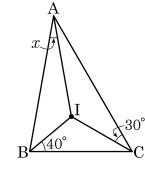
▶ 답:

 $\therefore \angle x + \angle y = 180^{\circ}$

2. 다음 그림의 $\triangle ABC$ 에서 $\overline{AB}=\overline{AC}$, $\angle BAD=\angle CAD$ 이다. \overline{CD} 의 길이와 $\angle ADC$ 의 크기를 구하여라.

 $\underline{\mathrm{cm}}$

답: 답:


▷ 정답: ∠ADC = 90 _

이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등분한다.

해설

 $\therefore \overline{\mathrm{CD}} = \overline{\mathrm{BD}} = 5(\mathrm{cm}), \angle \mathrm{ADC} = 90^{\circ}$

3. 다음 그림에서 점 I가 ΔABC의 내심일 때 ∠x의 크기를 구하여라.

 ► 답:

 ▷ 정답:
 20°

삼각형의 세 내각의 이등분선의 교점이 삼각형의 내심이다.

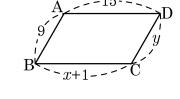
따라서 ∠BAI + ∠CBI + ∠ACI = 90°이므로 ∠x + 40° + 30° = 90 ∴ ∠x = 20°

4. 평행사변형 ABCD 에서 BE 는 ∠ABC 의 이 등분선이다. AB = 6cm, AD = 7cm 일 때, CE 의 길이는?

①7cm

4 8.5cm

② 7.5cm ⑤ 9cm ③ 8cm B

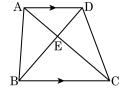

해설

AB // DC 이므로

∠ABE = ∠BEC (엇각) ∠EBC = ∠BEC 이므로 △BEC 는 이등변삼각형이다.

 $\therefore \overline{\mathrm{CE}} = \overline{\mathrm{BC}} = \overline{\mathrm{AD}} = 7(\mathrm{cm})$

5. 다음 사각형 ABCD 가 평행사변형이 되도록 x, y 의 값을 차례로 구한 것은?


① 9,15 ② 15,9 ③ 9,9 ④ 14,9 ⑤ 9,14

두 쌍의 대변의 길이가 각각 같아야 한다. x+1=15, x=14

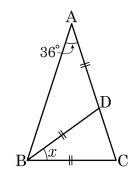
y = 9

해설

6. 다음 그림의 사각형 ABCD 에서 $\overline{\rm AD}$ $//\overline{\rm BC}$ 이고, $\Delta \rm ABC$ 의 넓이가 $20~{\rm cm}^2$ 일 때, $\Delta \rm DBC$ 의 넓이를 구하여라.

 > 정답:
 20 cm²

▶ 답:


밑변이 동일하고 밑변과 평행한 직선까지의 거리가 같으므로

해설

 $\triangle ABC$ 의 넓이와 $\triangle DBC$ 의 넓이는 같다. $\therefore \triangle DBC = 20 \, \mathrm{cm}^2$ 이다.

 $\underline{\mathrm{cm}^2}$

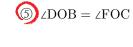
7. 다음 그림에서 $\triangle ABC$ 는 $\overline{AB}=\overline{AC}$ 인 이등변삼각형이고 $\overline{AD}=$ $\overline{\mathrm{BD}} = \overline{\mathrm{BC}}$ 일 때, $\angle x$ 의 크기는?

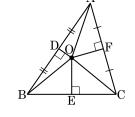
① 36°

② 40°

③ 44°

④ 46°

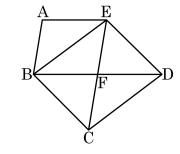

⑤ 30°


 $\triangle ABD$ 는 이등변삼각형이므로 $\angle A=\angle ABD=36^\circ$ $\angle BDC = 36^{\circ} + 36^{\circ} = 72^{\circ}$ $\Delta \mathrm{BDC}$ 는 이등변삼각형이므로 $\angle \mathrm{BDC} = \angle \mathrm{BCD} = 72^\circ$

 $\therefore \angle x = 180^{\circ} - 72^{\circ} - 72^{\circ} = 36^{\circ}$

- 8. 다음 그림을 보고, 다음 중 크기가 같은 것끼리 묶은 것이 <u>아닌</u> 것은?

 - \bigcirc $\overline{AF} = \overline{CF}$
 - \bigcirc $\angle OEB = \angle OEC$


∠DOB = ∠DOA 이코 ∠FOC = ∠FOA 이다.

평행사변형 ABCD에서 \angle ACD = 70° , 9. ∠ABD = 30° 일 때, ∠x 의 크기는?

③ 70° ② 50° ① 30° ⑤100° ④ 80°

 $\overline{AB} /\!/ \overline{CD}$ 이므로 $\angle BAC$ = $\angle ACD$ = 70° 이코, $\angle ABD$ = ∠CDB = 30° 이다. 따라서 $\angle x = \angle ACD + \angle CDB$ =70 $^{\circ} + 30$ $^{\circ}$ $=100\,^{\circ}$

10. 다음 그림과 같이 두 개의 평행사변형 ABFE 와 BCDE 가 주어졌을 때, 넓이가 <u>다른</u> 하나를 고르면?

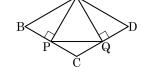
- \bigcirc $\triangle ABE$ **④** △BCE
- ② $\frac{1}{2}$ \square ABFE ③ $\frac{1}{2}$ \triangle EBD ⑤ $\frac{1}{4}$ \square BCDE

그림에서 나눠진 작은 5개의 삼각형의 넓이는 모두 같다.

해설

11. 다음 그림에서 $\square ABCD$ 는 평행사변형이고, $\triangle APD$ = 12cm^2 , $\triangle PBC = 30\text{cm}^2$ 일 때, $\frac{1}{2}$ □ABCD의 넓이는?

 42cm^2 $2 38 \text{cm}^2$ \bigcirc 44cm²


 $3 40 \text{cm}^2$

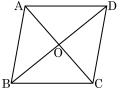
내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD = \triangle APD + \triangle PBC 이다. \triangle APD = 12cm^2 , \triangle PBC = 30cm^2 이므로

 $12 + 30 = \frac{1}{2}$ \square ABCD 이다.

따라서 $\frac{1}{2}$ \square ABCD의 넓이는 42cm 2 이다.

12. 마름모 ABCD 의 한 꼭짓점 A에서 \overline{BC} , $\overline{\text{CD}}$ 위에 내린 수선의 발을 각각 P, Q 라 할 때, $\angle PAQ = 60^{\circ}$ 일 때, $\angle APQ = (\quad)^{\circ}$ B< 이다. () 안에 알맞은 수를 구하여라.

▶ 답: ➢ 정답: 60

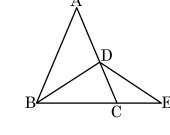

 $\angle B = \angle D$ 이코, $\overline{AB} = \overline{AD}$,

해설

 $\angle APB = \angle AQD = 90^{\circ}$ $\triangle APB \equiv \triangle AQD \; (RHA \; 합동)
ightarrow \; \overline{AP} = \overline{AQ} \; 이므로 \; \triangle APQ 는$

이등변삼각형이다. $\angle \mathrm{APQ} = \frac{180^\circ - 60^\circ}{2} = 60^\circ$ 이다.

13. 다음 그림의 평행사변형 ABCD 가 정사각형 이 되기 위한 조건을 모두 고르면? (정답 2 개)



- \bigcirc $\overline{AC} \perp \overline{DB}$, $\angle ABC = 90^{\circ}$ \bigcirc $\overline{AO} = \overline{BO}$, $\angle ADO = \angle DAO$
- $\overline{\text{OA}} = \overline{\text{OD}} , \overline{\text{AB}} = \overline{\text{AD}}$

평행사변형이 정사각형이 되기 위해서는 두 대각선이 서로 수직

해설

이등분하고 한 내각의 크기가 90°이다. 또한 네 변의 길이가 같고, 네 내각의 크기가 같으면 정사각형 이다. 14. 다음 그림에서 $\overline{AB} = \overline{AC} = 7 \mathrm{cm}, \ \overline{DC} = 3 \mathrm{cm}, \ \overline{DE} = 5 \mathrm{cm}, \ \angle ABD =$ $\angle {
m CBD},\, \overline{
m CD}=\overline{
m CE}$ 일 때, $\overline{
m BD}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

▷ 정답: 5 cm

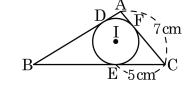
▶ 답:

 $\overline{\mathrm{CD}} = \overline{\mathrm{CE}}$ 이므로 $\angle \text{CDE} = \angle \text{CED}, \ \angle \text{CED} = \angle a$ 라 하면

해설

 $\therefore \angle DCB = \angle CDE + \angle CED = 2\angle a$

 $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ 이므로 $\angle \mathrm{ABC} = \angle \mathrm{DCB} = 2 \angle a$


 $\angle \text{CBD} = \frac{1}{2} \angle \text{ABC} = \frac{1}{2} \times 2 \angle a = \angle a$

 $\angle \text{CBD} = \angle \text{CED} = \angle a$ 이므로 ΔBDE는 이등변삼각형이다.

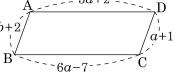
따라서 $\overline{\mathrm{BD}}$ 의 길이는 $\overline{\mathrm{DE}}$ 의 길이와 같다.

 \therefore 5cm

15. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이다. \overline{AD} 의 길이를 구하여라. (단, 단위는 생략한다.)

 $\underline{\mathrm{cm}}$

▷ 정답: 2<u>cm</u>


▶ 답:

해설

점 I 가 삼각형의 내심이므로 $\overline{AD}=\overline{AF},\overline{BE}=\overline{BD},\overline{CE}=\overline{CF}$ $\overline{\text{CE}} = 5 = \overline{\text{CF}}$ 이므로 $\overline{\text{AF}} = 7 - 5 = 2 = \overline{\text{AD}}$ 이다.

 $\therefore \overline{\mathrm{AD}} = 2(\,\mathrm{cm})$

16. 다음과 같은 사각형 ABCD가 평 행사변형이 되도록 하는 a, b의 합 a+b의 값을 구하여라. b+2

 답:

 ▷ 정답:
 5

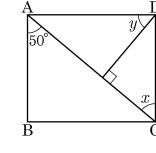
해설

평행사변형이 되려면

 $\overline{\mathrm{AD}} = \overline{\mathrm{BC}}$ 이어야 하므로 3a + 2 = 6a - 7

3a = 9

 $\therefore a = 3$


또한, $\overline{AB} = \overline{DC}$ 이어야 하므로 b+2=a+1

b+2=4 $\therefore b=2$

 $\therefore b = 2$ $\therefore a + b = 5$

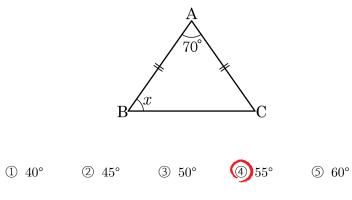
. . . .

17. □ABCD 에서 ∠x + ∠y = ()° 이다. () 안에 알맞은 수를 구하여라.(단, □ABCD 는 직사각형)

100

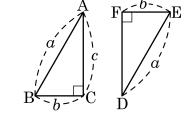
② 105 ③ 110 ④ 115

⑤ 120


∠x = 50° (∵ 엇각)

해설

 $\angle y = 180^{\circ} - (90^{\circ} + 40^{\circ}) = 50^{\circ}$ 따라서 $\angle x + \angle y = 50^{\circ} + 50^{\circ} = 100^{\circ}$


이다.

18. 다음 그림과 같은 이등변삼각형에서 $\angle x$ 의 크기는?

 $\angle x = (180^{\circ} - 70^{\circ}) \div 2 = 55^{\circ}$

19. 다음 그림과 같은 두 직각삼각형 ABC, DEF 가 합동임을 증명하는 과정이다. $(1) \sim (5)$ 안에 알맞은 것을 보기에서 찾아라.

증명)
△ABC 와 △DEF 에서
∠C = [(1)] = [(2)], ĀB = [(3)], BC = [(4)]
∴ △ABC ≡ △DEF ([(5)]합동)

 ③ ∠F
 ⑤ DE
 ⑤ DF

 ② EF
 ⑤ SAS
 ⑥ RHS

 ④ RHA
 ⑥ 90°
 ※ 45°

 답:

 답:

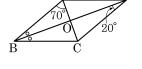
 답:

 > 접:

 ○ 정답:

 ○ 정답:

답:


 ▷ 정답: ②

 ▷ 정답: ④

▷ 정답: ⑤

증명) △ABC 와 △DEF 에서

∠C = ∠F = 90°, $\overline{AB} = \overline{DE}$, $\overline{BC} = \overline{EF}$ ∴ $\triangle ABC \equiv \triangle DEF$ (RHS 합동) **20.** 다음 그림과 같은 평행사변형 ABCD 에서 ∠ABO = ∠CBO, ∠OAB = 70°, ∠ODC = 20° 일 때, ∠OCB 의 크기를 구하여라.

 > 정답: 70_°

V 88: 10_

▶ 답:

 $\overline{\rm AB}\,/\!/\,\overline{\rm CD}$ 이므로 $\angle {\rm CDB} = \angle {\rm ABD} = 20^\circ$ 이고, $\triangle {\rm ABC}$ 에서

해설

∠OCB = 180° - (70° + 40°) = 70° 이다.