다음 중 옳은 것은? 1.

- ① a > 0 일 때, a 의 제곱근은 \sqrt{a} 이다. ② $\sqrt{16}$ 의 제곱근은 ± 2 이다.
- ③ 1.6 의 제곱근은 ±0.4 이다.
- ④ 0의 제곱근은 없다.
- ⑤ a < 0 일 때, $\sqrt{(-a)^2} = a$ 이다.

① a > 0 일 때, a 의 제곱근은 $\pm \sqrt{a}$ 이다.

해설

- ③ 1.6 의 제곱근은 $\pm\sqrt{1.6}$ 이다.
- ④ 0 의 제곱근은 0 이다. ⑤ a < 0 일 때, $\sqrt{(-a)^2} = -a$ 이다.

- a < 5 일 때, $\sqrt{(a-5)^2} \sqrt{(-a+5)^2}$ 을 바르게 계산한 것은? 2.
 - ① -2a 10 ② -2a

- ④ 2a ⑤ 2a + 10

 $\sqrt{(a-5)^2} - \sqrt{(-a+5)^2} = -(a-5) - (-a+5)$ = -a+5+a-5=0

- **3.** 다음 중 $\sqrt{28x}$ 가 자연수가 되게 하는 x 의 값으로 옳지 않은 것은?
 - ① $\frac{1}{7}$ ② 7^2 ③ 28 ④ 63 ⑤ $\frac{4}{7}$

 $\sqrt{28x}=\sqrt{2^2\times7\times x}$ ② $\sqrt{2^2\times7^3}=2\times7\times\sqrt{7}=14\sqrt{7}$ 이 되어 자연수가 되지 못한

4. 다음 5 개의 ϕ A, B, C, D, E 가 정수가 되는 ϕ 중 가장 작은 자연 수를 a, b, c, d, e 라 한다. 다음 중 <u>옳은</u> 것은?

$$A = \sqrt{4+a} , \quad B = \sqrt{5^2 + b}$$

$$C = \sqrt{5^2 \times 3^3 \times c} , \quad D = \sqrt{160 + 2d}$$

- ② a < c < b < d ③ b < a < d < c① a < b < c < d
- \bigcirc *c* < *d* < *a* < *b*

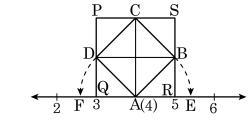
정수가 되려면 근호 안의 수가 제곱수가 되어야 한다.

해설

A 에서 4+a=9 일 때 a 가 가장 작은 수이면서 제곱수를 만든다. $\therefore a = 5$

B 에서 $5^2 + b = 36$ 일 때 b 가 가장 작은 수이면서 제곱수를 만든다.

 $\therefore b = 11$


C에서 $5^2\times 3^3\times c$ 가 제곱수가 되려면 가장 작은 수는 c=3일

때 이다. D 에서 $160 + 2d = 196 (= 14^2)$ 일 때 d 가 가장 작은 수이면서

근호 안이 제곱수가 된다. d = 18

 $\therefore c < a < b < d$

5. 다음 그림과 같이 한 변의 길이가 2 인 정사각형 PQRS 가 있다. \overline{AB} 를 회전하여 수직선과 만나는 점을 E , $\overline{\mathrm{AD}}$ 를 회전하여 수직선과 만나는 점을 F 라고 할 때, 두 점의 좌표가 바르게 짝지어진 것은?

- ③ $\mathrm{E}(4+\sqrt{2})$, $\mathrm{F}(4-\sqrt{2})$ ④ $\mathrm{E}(4-\sqrt{2})$, $\mathrm{F}(4+\sqrt{2})$
- ① $\mathrm{E}(5+\sqrt{2})$, $\mathrm{F}(3-\sqrt{2})$ ② $\mathrm{E}(5-\sqrt{2})$, $\mathrm{F}(4+\sqrt{2})$

한 변의 길이가 1 인 정사각형의 대각선의 길이는 $\sqrt{2}$ 이므로

 $\overline{AB} = \overline{AE} = \overline{AD} = \overline{AF} = \sqrt{2}$ 점 E 는 4 보다 $\sqrt{2}$ 만큼 큰 수이므로 점 E 의 좌표는 $\mathrm{E}(4+\sqrt{2})$ 점 F 는 4 보다 $\sqrt{2}$ 만큼 작은 수이므로 점 F 의 좌표는 $\mathrm{F}(4-\sqrt{2})$

6. 다음 보기의 설명 중 옳지 <u>않은</u> 것을 모두 고른 것은?

보기

- ⑤ $\sqrt{2}$ 와 $\sqrt{3}$ 사이에는 무수히 많은 유리수가 있다.
- 두 정수 사이에는 또 다른 정수가 있다.
- © $\sqrt{5}$ 와 $\sqrt{7}$ 사이에는 무수히 많은 무리수가 있다.

④ □,⊜,□

① ①,Û

②□,@ ⑤ ⑦,□,@,@

3 ¬,□,⊜

해설

© 두 정수 사이에는 또 다른 정수가 있다,

② 서로 다른 무리수의 합은 항상 무리수이다. 반례) $\sqrt{3} + (-\sqrt{3}) = 0$ 유리수가 되는 경우도 존재한다.

2 1) 13 1 (13) 3 11 11 1 12 3 1

반례) 1 과 2 사이에는 정수가 존재하지 않는다.

- 7. $a = 6 \sqrt{5}, b = 1 + 2\sqrt{5}$ 일 때, 다음 중 옳은 것은?
 - ① a+b < 0
- ② a b > 0
- 4 b 4 < 0
- ⑤ 2a + b > 15

해설

- ① $a+b=6-\sqrt{5}+1+2\sqrt{5}=7+\sqrt{5}>0$ ② $a-b=6-\sqrt{5}-1-2\sqrt{5}=5-3\sqrt{5}<0$

- 8. 다음에 주어진 수를 크기가 큰 것부터 차례로 나열할 때, 두 번째에 해당하는 것은?
 - ① $\sqrt{3} + \sqrt{2}$
- ② $\sqrt{3} + 1$ ③ $\sqrt{2}$

 - $4 \sqrt{5} + \sqrt{3}$

해설

 $\sqrt{5}$ $\sqrt{2} + \sqrt{5}$

i) $\sqrt{3} + \sqrt{2} - (\sqrt{3} + 1) = \sqrt{2} - 1 > 0$

- $\therefore \sqrt{3} + \sqrt{2} > \sqrt{3} + 1$
- ii) $\sqrt{3} + 1 \sqrt{2} > 0$ $\therefore \sqrt{3} + 1 > \sqrt{2}$
- iii) $\sqrt{3} + \sqrt{2} (\sqrt{5} + \sqrt{3}) = \sqrt{2} \sqrt{5} < 0$ $\therefore \sqrt{3} + \sqrt{2} < \sqrt{5} + \sqrt{3}$
- iv) $\sqrt{2} + \sqrt{5} (\sqrt{5} + \sqrt{3}) = \sqrt{2} \sqrt{3} < 0$
- $\therefore \quad \sqrt{2} + \sqrt{5} < \sqrt{5} + \sqrt{3}$ 따라서 주어진 수의 순서는
- $\sqrt{5} + \sqrt{3} > \sqrt{5} + \sqrt{2} > \sqrt{3} + \sqrt{2} > \sqrt{3} + 1 > \sqrt{2}$

9. 아래 수직선 위의 점 A,B,C,D,E 와 보기의 수가 잘못 연결된 것을 <u>모두</u> 고르면?

リフト $-\sqrt{9}, 1 - \sqrt{2}, \sqrt{7}, \frac{2}{3}, -\sqrt{3} + 5$

① A: $-\sqrt{9}$ ② B: $-\sqrt{3} + 5$ ③ C: $\frac{2}{3}$ ④ D: $\sqrt{7}$

해설

 $-\sqrt{9} = -3$ $-2 < -2\sqrt{2} < -1$ 이므로 $-1 < 1 - \sqrt{2} < 0$ $\sqrt{4} < \sqrt{7} < \sqrt{9}$ 이므로 $2 < \sqrt{7} < 3$ $-2 < -\sqrt{3} < -1$ 이므로 $3 < -\sqrt{3} + 5 < 4$

- 10. $-\sqrt{2}$ 와 $\sqrt{5}$ 사이에 있는 수에 대한 설명으로 옳지 <u>않은</u> 것은?
 - ① 자연수가 2 개 있다.
 - ◎ 정수가 3 개 있다.
 - ③ 무수히 많은 무리수가 있다.
 - ④ 무수히 많은 유리수가 있다.
 - ⑤ 무수히 많은 실수가 있다.

② $-\sqrt{2}$ 와 $\sqrt{5}$ 사이에는 정수가 -1, 0, 1, 2 모두 4 개이다.

해설

- 11. $\sqrt{\frac{6}{128}}$ 을 근호 안의 수가 가장 작은 자연수가 되도록 하면 $\frac{\sqrt{a}}{b}$ 가 된다. 이 때, 자연수 a, b의 합 a + b의 값은?
 - ① 5 ② 6 ③ 8 ④ 11 ⑤ 16

 $\sqrt{\frac{6}{128}} = \sqrt{\frac{2 \times 3}{2^3 \times 4^2}} = \sqrt{\frac{3}{2^2 \times 4^2}} = \frac{\sqrt{3}}{8}$ $\therefore a = 3, b = 8$ $\therefore a + b = 3 + 8 = 11$

- **12.** 다음 식을 간단히 하였을 때, 계산 결과가 <u>다른</u> 하나는?
 - ① $2\sqrt{3} 3\sqrt{3} 3\sqrt{5} + 5\sqrt{5}$ ② $4\sqrt{3} + \sqrt{5} 5\sqrt{3} + \sqrt{5}$
 - ③ $\sqrt{3} + 3\sqrt{5} \sqrt{5} 2\sqrt{3}$ ④ $\sqrt{5} + \sqrt{5} + \sqrt{3} 2\sqrt{3}$
 - $\boxed{3} 3\sqrt{5} \sqrt{5} + 3\sqrt{3} + 2\sqrt{3}$

①, ②, ③, ④ $-\sqrt{3} + 2\sqrt{5}$

해설

 $5\sqrt{3} + 2\sqrt{5}$

13.
$$x = \frac{\sqrt{3} + \sqrt{2}}{2}$$
, $y = \frac{\sqrt{3} - \sqrt{2}}{2}$ 일 때, $(x + y)(x - y)$ 의 값은?

- ① $\sqrt{2}$ ② $\sqrt{3}$ ③ $\sqrt{6}$ ④ $2\sqrt{3}$ ⑤ $3\sqrt{6}$
- $x + y = \frac{\sqrt{3} + \sqrt{2} + \sqrt{3} \sqrt{2}}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3}$ $x y = \frac{\sqrt{3} + \sqrt{2} (\sqrt{3} \sqrt{2})}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2}$ $\therefore (x + y)(x y) = \sqrt{3} \times \sqrt{2} = \sqrt{6}$

14. $12(3\sqrt{10}-\sqrt{2})-\sqrt{2}(8\sqrt{5}-1)=a\sqrt{2}+b\sqrt{10}$ 일 때, a+b 의 값은? (단, a,b는 유리수이다.)

⑤ 23

① -11 ② -5 ③ 10 ④ 17

해설

 $12(3\sqrt{10} - \sqrt{2}) - \sqrt{2}(8\sqrt{5} - 1)$ $= 36\sqrt{10} - 12\sqrt{2} - 8\sqrt{10} + \sqrt{2} = -11\sqrt{2} + 28\sqrt{10}$ $\therefore a = -11, b = 28 \rightarrow a + b = -11 + 28 = 17$

- 15. $\sqrt{7}$ 의 소수 부분을 $a, \sqrt{17}$ 의 소수 부분을 b 라고 할 때, ab 의 값을 구하면?

 - ① $\sqrt{119} 3\sqrt{7} 2\sqrt{17} + 8$ ② $\sqrt{119} + 3\sqrt{7} 2\sqrt{17} + 8$ ③ $\sqrt{119} + 3\sqrt{7} + 2\sqrt{17} + 8$ ④ $\sqrt{119} - 4\sqrt{7} - 2\sqrt{17} + 8$

 $2 < \sqrt{7} < 3$ 이므로 $a = \sqrt{7} - 2$ 이고,

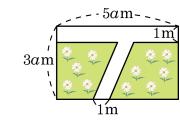
 $4 < \sqrt{17} < 5$ 이므로 $b = \sqrt{17} - 4$ 이다.

 $\therefore ab = (\sqrt{7} - 2)(\sqrt{17} - 4)$

 $= \sqrt{119} - 4\sqrt{7} - 2\sqrt{17} + 8$

- ① $(x+5)(x-5) = x^2 25$
- ② $(-4+x)(-4-x) = 16-x^2$ ③ $(-a+3)(-a-3) = -a^2+9$
- $(-x 2y)(x 2y) = -x^2 + 4y^2$

$$(-a+3)(-a-3) = a^2 - 9$$


해설

17. $(x-2)(x^2+4)(x+2)$ 을 전개하면?

- ① $x^2 16$ ② $x^2 + 4$ ③ $x^4 4$

$$(x-2)(x+2)(x^2+4) = (x^2-4)(x^2+4) = x^4-16$$

18. 다음 그림과 같이 가로의 길이가 $5a\mathrm{m}$, 세로의 길이가 $3a\mathrm{m}$ 인 직사각형 모양의 화단 안에 폭이 $1\mathrm{m}$ 인 길을 만들었다. 길을 제외한 화단의넓이는?

- ① $(15a^2 15a)$ m² ③ $(15a^2 - 8a)$ m²
- ② $(15a^2 9a)$ m² ④ $(15a^2 - 9a + 1)$ m²
- $(15a^2 8a + 1)$ m²

화단 안의 폭을 오른쪽으로 붙여 화단을 직사각형으로 만들면

해설

가로의 길이가 (5a-1), 세로의 길이가 (3a-1)이 된다. 화단의 넓이는 $(5a-1)(3a-1)=15a^2-8a+1$ 이다.

- **19.** 다음 식을 전개하면? (2x + 3y - 4)(2x - 3y + 4)

 - ① $4x^2 y^2 + y 16$ ② $4x^2 y^2 + 9y 16$ ③ $4x^2 - 9y^2 + y - 16$ ④ $4x^2 + 9y^2 - 24y - 16$

 - $\bigcirc 34x^2 9y^2 + 24y 16$

 ${2x + (3y - 4)} {2x - (3y - 4)}$ 3y - 4 = t라 하면

(2x+t)(2x-t) $= 4x^2 - t^2$

t = 3y - 4를 대입하면

 $4x^{2} - (3y - 4)^{2}$ $= 4x^{2} - 9y^{2} + 24y - 16$

20. (x+1)(x+2)(x-3)(x-4)의 전개식에서 x^2 의 계수는?

① -12 ② -7 ③ 3 ④ 6 ⑤ 8

(x+1)(x+2)(x-3)(x-4) $= \{(x+1)(x-3)\}\{(x+2)(x-4)\}$ $= (x^2-2x-3)(x^2-2x-8)$ $x^2 \circ | 나오는 향은 -8x^2+4x^2-3x^2 \circ | 다.$ 따라서 $x^2 \circ |$ 계수는 $-7 \circ |$ 다.

- 21. 곱셈 공식을 이용하여 다음 수의 값을 계산할 때, 나머지 넷과 <u>다른</u> 공식이 적용되는 것은?

 - ① 1.7×2.3 ② 94×86
- $\fbox{3}28\times31$

해설

(4) 99×101 (5) 52×48

- ①, ②, ④, ⑤ $(a+b)(a-b) = a^2 b^2$ ③ $(x+a)(x+b) = x^2 + (a+b)x + ab$

① 18 ② 19 ③ 20 ④ 21 ⑤ 22

$$x^{2} - xy + y^{2} = (x + y)^{2} - 3xy$$

$$= 3^{2} - 3 \times (-4)$$

$$= 21$$

23. x 에 관한 이차식 (x-a+2)(x+5-2a) 가 완전제곱식이 되기 위한 a 의 값을 구하면?

① -3 ② -1 ③ 1 ④ 2 ⑤ 3

-a + 2 = 5 - 2a

 $\therefore a = 3$

24. 다음 \square 안에 알맞은 수가 <u>다른</u> 하나는?

- ① $9x^2 + 6x + 1 = (\boxed{x+1})^2$ ② $2x^2 + 7x + \square = (2x+1)(x+3)$
- $(3) 16x^2 9y^2 = (4x + \boxed{y})(4x 3y)$ $4x^2 - 12x + 9 = (2x - \square)^2$
- $x^2 x + 3 = (x 1)(x 3)$

①, ②, ③, ④의 □는 3 이고

⑤은 4 이다.

25. $(x+2)^2 - 5(x+2) + 6$, $x^2 + x - 2$ 의 공통인 인수는?

① x ② x-1 ③ x+2 ④ x-3 ⑤ x+1

x+2 를 A 라 하면 $(x+2)^2 - 5(x+2) + 6 = A^2 - 5A + 6$

= (A-3)(A-2)= x(x-1)

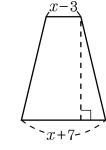
 $x^2 + x - 2 = (x - 1)(x + 2)$: 공통인 인수는 x - 1

.. 000 01 01 0 1 - 1

- **26.** $6x^2 + ax + 15 = (2x + b)(cx + 5)$ 이고 a, b, c 는 상수일 때, a + b + c의 값은?
 - ① 21
- ② 22 ③ 23
- ④ 24
- **(5)** 25

해설 $6x^2 + ax + 15 = 2cx^2 + (10 + bc)x + 5b$

2c = 6, 5b = 15, 10 + bc = a $c = 3, \ b = 3, \ a = 19$ $\therefore a+b+c=25$


- **27.** 현주는 선생님께서 칠판에 적어주신 이차식을 잘못하여 x 의 계수와 상수항을 바꾸어 필기하였다. 지하는 현주의 노트를 보고 필기를 하다가 x 의 계수의 부호를 반대로 하여 인수 분해를 하였더니 (x-2)(x-3)가 나왔다. 처음 선생님께서 적어주신 이차식을 바르게 인수 분해하면?
 - (3) (x+1)(x+5) (x+1)(x+6)

① (x+1)(x+2) ② (x+1)(x+3) ③ (x+1)(x+4)

해설

 $x^2 - 5x + 6 \rightarrow x^2 + 5x + 6 \rightarrow x^2 + 6x + 5 \rightarrow (x+1)(x+5)$

28. 다음 그림과 같은 사다리꼴의 넓이가 $2x^2 + 5x + 2$ 일 때, 이 사다리꼴의 높이는?

- (4) x-1 (5) x+1
- ① x+2 ② x-2
- 32x + 1

해설
$$S = \frac{1}{2}h(x-3+x+7) = \frac{1}{2}h(2x+4) = h(x+2)$$

$$2x^2 + 5x + 2 = (2x+1)(x+2) = h(x+2)$$
이다.

29. $(2x+1)^2 - (x-2)^2 = (3x+a)(x+b)$ 일 때, a+3b 의 값을 구하면?

① 4.5 ② 6 ③ 7 ④8 ⑤ 9

$$(2x+1)^2 - (x-2)^2$$

$$= (2x+1+x-2)(2x+1-x+2)$$

$$= (3x-1)(x+3)$$

$$a = -1, b = 3$$

$$\therefore a+3b = -1+9=8$$

30. 식 xy + bx - ay - ab 을 인수분해하면?

해설

①
$$(x-a)(y-b)$$
 ② $(x-a)(y+b)$ ③ $(x+a)(y-b)$
④ $(x+a)(y+b)$ ⑤ $(x-b)(y-a)$

$$(x+u)(y+b) \qquad (x-b)(y-u)$$

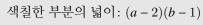
$$(\overline{z}, \underline{\lambda}) = x(y+b) - a(y+b)$$
$$= (x-a)(y+b)$$

31. x, y 가 다음과 같을 때, $\frac{x^2 - y^2}{xy}$ 의 값은?

$$x = \frac{1}{\sqrt{2} - 1}, y = \frac{1}{\sqrt{2} + 1}$$

① $\sqrt{2}$ ② $\sqrt{3}$ ③ $2\sqrt{2}$ ④ $3\sqrt{2}$ ⑤ $4\sqrt{2}$

 $x = \frac{1}{\sqrt{2} - 1} = \frac{\sqrt{2} + 1}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \sqrt{2} + 1$ $y = \frac{1}{\sqrt{2} + 1} = \frac{\sqrt{2} - 1}{(\sqrt{2} + 1)(\sqrt{2} - 1)} = \sqrt{2} - 1$ $\Box \Rightarrow x + y = 2\sqrt{2}, x - y = 2, xy = 1 \Rightarrow \Box \Rightarrow z = 1$ $\frac{x^2 - y^2}{xy} = \frac{(x + y)(x - y)}{xy} = 2\sqrt{2} \times 2 = 4\sqrt{2}$


32.
$$xy = 5$$
 이고, $x^2y + xy^2 + 2(x + y) = 42$ 일 때, $x^2 + y^2$ 의 값은?

① 10 ② 15 ③ 20 ④ 26 ⑤

$$x^2y + xy^2 + 2(x + y) = xy(x + y) + 2(x + y)$$

= $(x + y)(xy + 2) = 42$ 에서
 $xy = 5$ 이므로 $x + y = 6$ 이다.
 $\therefore x^2 + y^2 = (x + y)^2 - 2xy$
= $6^2 - 2 \times 5$
= $36 - 10 = 26$

- 33. 다음 도형의 색칠한 부분의 넓이를 나타낸 것이 <u>아닌</u> 것은?
 - ① (a-2)(b-1)
 - ② a(b-1)-2(b-1) \bigcirc ab + 2

 - 4 b(a-2) (a-2) \bigcirc ab - 2b - a + 2

- ② a(b-1) 2(b-1) = (a-2)(b-1)
- ③ ab + 24 b(a-2) - (a-2) = (a-2)(b-1)