- 1. 다음 중 최댓값을 갖지 $_{\underbrace{\text{cc}}}$ 것은?

 - ① $y = -4x^2 + 1$ ② $y = -2(x-1)^2 + 10$
 - ⑤ $y = -(x+1)^2$

이차항의 계수가 음수일 때 최댓값을 갖는다.

- **2.** 이차함수 $y = -2 + 3x x^2 (-1 \le x \le 2)$ 의 최댓값과 최솟값의 합을 구하면?

 - ① $-\frac{23}{4}$ ② $-\frac{16}{3}$ ③ $-\frac{3}{4}$ ④ $\frac{7}{4}$ ⑤ $\frac{11}{3}$

 $y = -(x - \frac{3}{2})^2 + \frac{1}{4}$ 이므로

 $x = \frac{3}{2}$ 가 x의 값의 범위 $-1 \le x \le 2$ 에 포함되므로

 $x = \frac{3}{2}$ 에서 최솟값 $\frac{1}{4}$ 를 갖고, x = -1 에서 최댓값 -6을 갖는다. 따라서 최솟값과 최댓값의 합은 $-\frac{23}{4}$ 이다.

- **3.** x = -1 일 때, 최댓값 3 을 갖고 한 점 (1, -1) 을 지나는 포물선의

 - ① $y = -2(x+1)^2 4$ ② $y = (x-2)^2 3$

 - ③ $y = -2(x-1)^2 + 3$ ④ $y = -(x+1)^2 + 3$

꼭짓점이 (-1, 3) 이므로 $y = a(x+1)^2 + 3$

 $y = -(x+1)^2 + 3$

이차함수 $y = x^2 - 2ax - 2a - 5$ 의 최솟값을 m 이라고 할 때, m 의 4. 최댓값을 구하면?

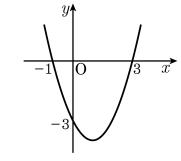
① -1 ② -2 ③ -3 ④ -4 ⑤ -5

해설

 $y = x^{2} - 2ax - 2a - 5$ $= (x - a)^{2} - a^{2} - 2a - 5$ y의 최솟값 : $m = -a^2 - 2a - 5$ = $-(a+1)^2 - 4$

m 의 최댓값 : −4

지면으로부터 초속 $30\mathrm{m}$ 로 던져 올린 물체의 t 초 후의 높이를 $h\mathrm{m}$ **5.** 라고 하면 $h = 30t - 5t^2$ 인 관계가 성립한다. 이 물체가 가장 높이 올라갔을 때의 높이는?


45m ① 60m ② 55m ③ 50m ⑤ 40m

 $h = 30t - 5t^2$

해설

 $= -5(t^2 - 6t + 9) + 45$ $= -5(t - 3)^2 + 45$

다음 그림은 이차함수 $y = ax^2 + bx + c$ 의 그래프이다. 이 이차함수의 **6.** 최솟값을 구하면?

- ① -1 ② -2 ③ -3
- \bigcirc -5

 $y=ax^2+bx+c$ 에서 x 절편이 -1,3 이므로 y=a(x+1)(x-3)이다. y 절편이 -3 이므로 a=1 이다.

y = (x+1)(x-3) $= x^2 - 2x - 3$

 $= (x-1)^2 - 4$

따라서 (최솟값) = -4 이다.

- 7. x의 값의 범위가 $x \ge 3$ 인 이차함수 $y = 2x^2 8kx$ 의 최솟값이 10 일 때, 상수 k 의 값은?
 - ① -1 ② $-\frac{1}{3}$ ③ $\frac{1}{3}$ ④ 1 ⑤ $\frac{5}{3}$

 $y = 2x^2 - 8kx = 2(x - 2k)^2 - 8k^2$

이참함수의 그래프의 꼭짓점의 좌표는 $(2k, -8k^2)$ 이다.

(i) $2k \ge 3$ 일 때, 꼭짓점의 x 좌표가 x의 값의 범위에 속하므로

해설

주어진 이차함수는 x = 2k 일 때 최솟값을 갖는다. 최솟값 이 10 이므로 $-8k^2 = 10$, $k^2 = -\frac{5}{4}$ 이 때, 실수 k 의 값은 존재하지 않는다. (ii) 2k < 3일 때 꼭짓점의 x 좌표가 x의 값의 범위에 속하지

않으므로 주어진 이차함수는 x = 3 일 때 최솟값을 갖는다. 최솟값이 10 이므로 18 - 24k = 10, 24k = 8

 $\therefore k = \frac{1}{3}$

실수 x, y가 2x + y = 4를 만족할 때, $x^2 + y^2$ 의 최솟값을 구하면? 8.

① $\frac{16}{5}$ ② $\frac{8}{5}$ ③ $\frac{4}{5}$ ④ $\frac{12}{5}$ ⑤ $\frac{17}{5}$

 $2x + y = 4 \text{ only } y = -2x + 4 \cdots \text{ only } y = -2x + 4 \cdots \text{ only } x^2 + y^2 = x^2 + (-2x + 4)^2$ $= 5x^2 - 16x + 16$ $= 5\left(x^2 - \frac{16}{5}x\right) + 16$ $= 5\left(x - \frac{8}{5}\right)^2 + \frac{16}{5}$

따라서 $x^2 + y^2$ 은 $x = \frac{8}{5}$ 일 때, 최솟값 $\frac{16}{5}$ 을 갖는다.

- 9. x, y, z가 실수일 때, $x^2 + y^2 + z^2 + 2x 6y 8z + 25$ 의 최솟값은?
 - ① -5 ② -3 ③ -1 ④ 1 ⑤ 3

해설

 $x^2 + y^2 + z^2 + 2x - 6y - 8z + 25$ $= (x+1)^2 + (y-3)^2 + (z-4)^2 - 1$ 이 때, x,y,z가 실수이므로 $(x+1)^2 \ge 0$, $(y-3)^2 \ge 0$, $(z-4)^2 \ge 0$ $\therefore x^2 + y^2 + z^2 + 2x - 6y - 8z + 25 \ge -1$

따라서 x = -1, y = 3, z = 4일 때,

주어진 식의 최솟값은 -1이다.

- 10. 1200 명이 들어갈 수 있는 어느 소극장에서 입장권을 6000 원에 팔면 평균 600 명의 관중이 입장한다. 시장조사에 의하면, 입장료를 500 원씩 내리면 100 명씩 더 온다고 조사가 되었다. 이 때, 수입을 최대로 하기 위한 입장권의 가격은?

③ 4000 원

② 3500 원 ④ 4500 원 ⑤ 5000 원

수입을 f(x) 라고 하면,

① 3000 원

해설

f(x) = (6000 - 500x)(600 + 100x) $= -50000x^2 + 300000x + 3600000$

 $= -50000(x-3)^2 + 4050000$

x = 3일 때 최대이다.

즉, (입장권 가격)= 6000 - 500 × 3 = 4500 원.