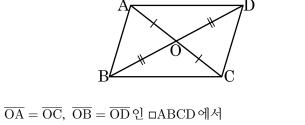

1. 다음은 '평행사변형에서 두 쌍의 대각의 크기가 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 알맞은 말을 차례대로 나열하면?


- 4 $\overline{\text{CD}}$, $\angle{\text{D}}$ 5 $\overline{\text{CB}}$, $\angle{\text{D}}$

① $\overline{\text{CB}}$, $\angle{\text{C}}$ ② $\overline{\text{BD}}$, $\angle{\text{C}}$ ③ $\overline{\text{AB}}$, $\angle{\text{D}}$

2. 다음 그림과 같은 평행사변형 ABCD에서 $\overline{AD}=8,\ \overline{AO}=5,\ \overline{BD}=12$ 일 때, ΔOAD 의 둘레의 길이는?

① 15 ② 16 ③ 17 ④ 18 ⑤ 19

3. 다음은 '두 대각선이 서로 다른 것을 이등분하면 평행사변형이다.' 를 증명하는 과정이다. ㄱ, ㄴ안에 들어갈 알맞은 것은?

△OAB와 △OCD에서 $\overline{\mathrm{OA}} = \overline{\mathrm{OC}}, \, \overline{\mathrm{OB}} = \overline{\mathrm{OD}} \, ($ 가정) $\angle AOB = \angle COD \left(\Box \Box \right)$ 따라서, $\triangle OAB \equiv \triangle OCD (SAS 합동)$ ∠OAB = □ □ 이므로

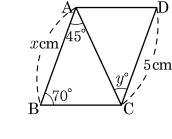
 $\therefore \overline{\mathrm{AB}} / \! / \overline{\mathrm{DC} \cdots \bigcirc}$

마찬가지로 △OAD ≡ △OCB에서

∠OAD = ∠OCB이므로 $\therefore \overline{\mathrm{AD}} /\!/ \overline{\mathrm{BC}} \cdots \mathbb{C}$

⊙, ⓒ에 의하여 □ABCD는 평행사변형이다.

② ㄱ : 엇각, ㄴ : ∠OAD


① ㄱ : 엇각, ㄴ : ∠OAB

③ ㄱ : 맞꼭지각, ㄴ : ∠ODA

④ ㄱ : 맞꼭지각, ㄴ : ∠OCD

⑤ ㄱ : 동위각, ㄴ : ∠OAD

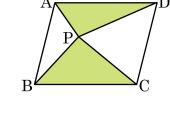
4. 다음 그림과 같은 □ABCD가 평행사변형이 되도록 하는 x, y의 값은?

x = 5, y = 40

x = 4, y = 40

- x = 4, y = 45④ x = 5, y = 45
- x = 10, y = 45

5. 다음 그림과 같이 평행사변형 ABCD 의 각 변의 중점을 P, Q, R, S 라고 할 때, $\square PQRS$ 는 어떤 도형이 되는가? ② 마름모


① 정사각형

③ 직사각형

④ 평행사변형

⑤ 사다리꼴

6. 다음 그림와 같은 평행사변형 ABCD에서 □ABCD = 20cm²일 때, 어두운 부분의 넓이의 합은?

 4 8cm^2

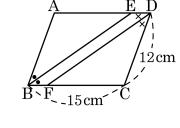
 \bigcirc 3cm²

- ② 4cm^2 ③ 10cm^2
- $3 \text{ } 6\text{cm}^2$

7. 다음 그림의 평행사변형 ABCD 에서 $\overline{\rm BE}$ 는 $\angle {\rm ABC}$ 의 이등분선이 다. $\overline{\rm BC}=12\,{\rm cm},\ \overline{\rm CD}=8\,{\rm cm}$ 일 때, $\overline{\rm DE}$ 의 길이는?

B -- 12cm -- C

- ① 2 cm


 \bigcirc 3 cm

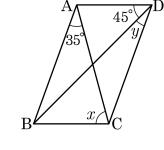
- 3 4 cm

45 cm

⑤ 6 cm

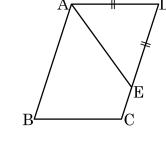
8. 다음 그림과 같은 평행사변형 ABCD에서 $\angle B$ 와 $\angle D$ 의 이등분선이 \overline{AD} , \overline{BC} 와 만나는 점을 각각 E, F라 하고, $\overline{BC}=15\mathrm{cm}$, $\overline{DC}=12\mathrm{cm}$ 일 때, \overline{DE} 의 길이를 구하면 ?

③ 3cm


4cm

 \bigcirc 5cm

② 2cm


① 1cm

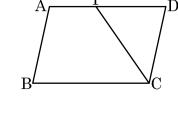
9. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle BAC=35\,^\circ$, $\angle ADB=45\,^\circ$ 일 때, $\angle x+\angle y$ 의 크기는?

① 94° ② 98° ③ 100° ④ 104° ⑤ 108°

10. 다음 그림과 같은 평행사변형 ABCD 에서 \angle A : \angle B = 3 : 2 일 때, \angle AEC 의 크기는?(단, \overline{AD} = \overline{DE})

① 98° ② 112°

③ 124°


4 126°

⑤ 132°

- **11.** 다음 조건 중 사각형 ABCD 가 평행사변형이 될 수 $\frac{\text{없는}}{\text{CO}}$ 것은?
 - ① $\angle A = 70^{\circ}$, $\angle B = 110^{\circ}$, $\angle C = 70^{\circ}$
 - ② \overline{AB} // \overline{CD} , \overline{AD} = 4cm, \overline{BC} = 4cm ③ $\angle A$ = $\angle C$, \overline{AB} // \overline{CD}

 - ⑤ 두 대각선의 교점을 O 라고 할 때, $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$

12. 다음 평행사변형 ABCD 에서 △PCD = $30 \mathrm{cm}^2$ 이고, $\overline{\mathrm{AP}}$: $\overline{\mathrm{PD}}$ = 2 : 3 이다. □ABCP 의 넓이는?

 $490 \, \mathrm{cm}^2$

 \bigcirc 60cm²

 $3 100 \text{cm}^2$

 $2 70 \text{cm}^2$

 $3 80 \text{cm}^2$

13. 넓이가 $80 \, \mathrm{cm}^2$ 인 다음 평행사변형 ABCD 에서 어두운 부분의 넓이 는?

P Q C

 $4 18 \, \text{cm}^2$

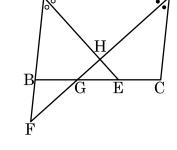
 $\bigcirc 8 \, \mathrm{cm}^2$

 $\odot 20\,\mathrm{cm}^2$

 $2 12 \,\mathrm{cm}^2$

- $315\,\mathrm{cm}^2$

의 값은?


 \bigcirc 20cm

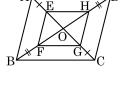
 \Im 21cm

14. 다음 그림의 평행사변형 ABCD 에서 a+b

 \bigcirc 19cm

④ 22cm ⑤ 23cm **15.** 다음 그림에서 \overline{AE} , \overline{DF} 는 각각 $\angle A$, $\angle D$ 의 이등분선이다. $\angle ABC=84^\circ$ 일 때, $\angle AEC+\angle DCE$ 의 크기를 구하여라.

① 208°

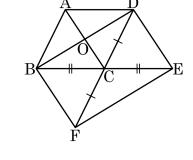

② 228°

 3238°

④ 248°

⑤ 250°

다음 그림과 같은 평행사변형 ABCD 에서 AE = CG, BF = DH일 때, □EFGH는 평행 사변형이 된다. 그 조건은?

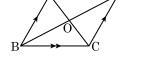


- ② 두 쌍의 대변의 길이가 각각 같다.
- ③ 두 쌍의 대각의 크기가 각각 같다.

① 두 쌍의 대변이 각각 평행하다

- ④ 두 대각선은 서로 다른 것을 이등분한다.
- ⑤ 한 쌍의 대변이 평행하고 그 길이가 같다.

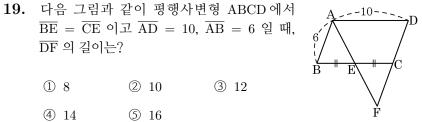
17. 평행사변형 ABCD 의 두 변 BC, DC 의 연장선 위에 $\overline{BC}=\overline{CE}$, $\overline{DC}=\overline{CF}$ 가 되도록 두 점 E, F 를 잡을 때, \Box ABCD를 제외한 사각 형이 평행사변형이 되는 조건은 보기에서 모두 몇 개인가?



⊙ 두 쌍의 대변이 각각 평행하다.

보기

- 두 쌍의 대변의 길이가 각각 같다.
- ⓒ 두 쌍의 대각의 크기가 각각 같다.
- ② 두 대각선이 서로 다른 것을 이등분한다.
 - ◎ 한 쌍의 대변이 평행하고 그 길이가 같다.
- ① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개


- **18.** 평행사변형 ABCD 의 두 대각선 AB,CD 의 교점을 O 라고 할 때, 다음 중 옳은 것은?

① $\angle OBA = \angle OCD$

② $\triangle OAB \equiv \triangle OAD$

- $\overline{BE} = \overline{CE}$ 이고 $\overline{AD} = 10$, $\overline{AB} = 6$ 일 때, DF 의 길이는? ① 8 ② 10
 - **4** 14 **5** 16
- ③ 12

- $oldsymbol{20}$. 다음은 평행사변형 ABCD 의 각 변의 중점을 각각 E, F, G, H 라 하고 \overline{AF} 와 \overline{CE} 의 교점 을 P , \overline{AG} 와 \overline{CH} 의 교점을 Q 라 할 때, 다음 중 □APCQ 가 평행사변형이 되는 조건으로 가장 알맞은 것은?
- ① $\overline{AE} = \overline{EB}$, $\overline{AD}//\overline{CB}$ ② $\overline{AF} = \overline{CH}$, $\overline{AH}//\overline{FC}$ $\ensuremath{\,\overline{\, 3}} \ensuremath{\,\overline{\, AB}} / / \overline{\rm DC}$, $\overline{\rm AQ} = \overline{\rm PC}$
 - $\textcircled{4}~\overline{\mathrm{AP}}//\overline{\mathrm{QC}}$, $\overline{\mathrm{AQ}}//\overline{\mathrm{PC}}$
- $\begin{cal} \begin{cal} \beg$