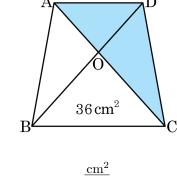

1. 다음 그림과 같은 피라미드의 높이를 재기 위해 길이가 1m 인 막대기의 그림자가 1m 가 될 때, 밑면의 가로의 길이가 30m 인 피라미드의그림자의 길이를 재었더니 10m 이 되었다. 이 피라미드의 높이를구하여라.

15m 15m 10m


▷ 정답: 25 <u>m</u>

1 m 인 나무막대기가 1 m 로 나타나므로 실제 길이를 x 라 하면

해설

1:1=x:25 이므로 x = 25(m) 이다.

2. 다음 그림과 같은 사다리꼴 ABCD 에서 $\overline{AD}:\overline{BC}=2:3$ 이고, $\Delta BCO=36 cm^2$ 일 때, ΔACD 의 넓이를 구하여라.

정답: 40 cm²

답:

해설

 $\triangle AOD$ $\triangle COB$ 이고, 닮음비는 \overline{AD} : $\overline{BC}=2:3$ 이므로 넓이의 비는 $\triangle AOD$: $\triangle COB=2^2:3^2=4:9$ 가 나온다. 실제

넓이가 $\triangle AOD: 36 = 4:9$ 이므로 $\triangle AOD = 16(cm^2)$ 이 된다. 또한 $\triangle COD: \triangle AOD = \overline{CO}: \overline{AO} = \overline{BC}: \overline{AD} = 3:2$ 이므로 $\triangle COD = \frac{3}{2}\triangle AOD = \frac{3}{2}\times 16 = 24(cm^2)$ 이 된다. 따라서 $\triangle ACD = \triangle AOD + \triangle COD = 16 + 24 = 40(cm^2)$

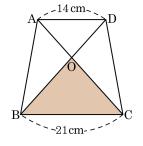
3. 다음 중 옳지 <u>않은</u> 것은?

- ① 닮음인 두 도형의 닮음비가 m:n 일 때, 둘레의 길이의 비는 m:n 이다.
 ② 닮음인 두 도형의 닮음비가 m:n 일 때, 넓이의 비는 m²:n²
- 이다.
 ③ 닮음인 두 도형의 닮음비가 m:n 일 때, 겉넓이의 비는 m:n
- 이다. ④ 닮음인 두 도형의 닮음비가 m:n 일 때, 부피의 비는 $m^3:n^3$
- 이다. ⑤ 닮음인 두 도형의 닮음비가 1:2 일 때, 부피의 비는 1:8 이다.

③ 닮음인 두 도형의 닮음비가 m:n일 때, 겉넓이의 비는 $m^2:n^2$

해설

이다.


- 4. 닮은 도형인 두 삼각형의 넓이의 비가 25:64 일 때, 이 두 삼각형의 둘레의 길이의 비는?
 - ① 1:5 ② 5:14 ③ 2:5 **4** 5:8 **5** 10:12

 $25:64=5^2:8^2$ 이므로 닮음비는 5:8 이고, 둘레의 길이의 비는 닮음비와 같다.

- AD // BC 인 사다리꼴 ABCD 에서 △ODA = 28 cm² 일 때, △OBC 의 넓이는?
 - ① $42 \,\mathrm{cm}^2$ ③ $63 \,\mathrm{cm}^2$
- ② 56 cm²
- $3 112 \, \text{cm}^2$
- $4 84 \, \mathrm{cm}^2$

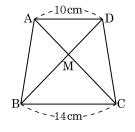
해설

△ODA ∽ △OBC 에서 닮음비는

 $\overline{\mathrm{DA}}:\overline{\mathrm{BC}}=2:3$ 이므로 넓이의 비는 $2^2:3^2=4:9$ $\triangle\mathrm{ODA}:\triangle\mathrm{OBC}=4:9$

28 : △OBC = 4 : 9 ∴ △OBC = 63 (cm²)

.. 20DC = 03 (cm


다음 그림에서 ∠ADE = ∠ACB , $\overline{\mathrm{AD}}$ = 6. 6cm/ $6\,\mathrm{cm}$, $\overline{\mathrm{AC}}=12\,\mathrm{cm}$ 이고, $\Delta\mathrm{ABC}$ 의 넓이가 $48\,\mathrm{cm}^2$ 일 때, $\Delta\mathrm{ADE}$ 의 넓이는? $212 \,\mathrm{cm}^2$ $\textcircled{1} \ 6\,\mathrm{cm}^2$ ${\it 3}\ 16\,{\rm cm}^2$

해설

4 $24\,\mathrm{cm}^2$

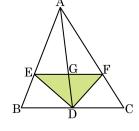
 ΔABC 와 ΔAED 의 닮음비가 2:1 이므로 넓이의 비는 4:1이다. $4:1=48:\triangle AED$ $\therefore \triangle AED = 12 (\,\mathrm{cm}^2)$

7. 다음 그림과 같이 $\overline{AD} /\!\!/ \overline{BC}$ 인 사다리꼴 \overline{ABCD} 에서 두 대각선의 교점이 M 이고, $\overline{AD} = 10 \mathrm{cm}$, $\overline{BC} = 14 \mathrm{cm}$ 이다. $\Delta ADM = 20 \mathrm{cm}^2$ 일 때, ΔBCM 의 넓이를 구하여라.

 ▷ 정답:
 39.2 cm²

 $\Delta {
m DAM}$ 과 $\Delta {
m BCM}$ 의 닮음비가 5:7 이므로 넓이의 비는 25:49

해설

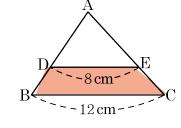

▶ 답:

이다. 25: 49 = 20: △BCM

 $\underline{\mathrm{cm}^2}$

 $\therefore \triangle BCM = 39.2 (\text{ cm}^2)$

8. 다음 그림에서 점 G 는 $\triangle ABC$ 의 무게중심이고 \overline{BC} $//\overline{EF}$ 이다. $\triangle ABC = 144 \, \mathrm{cm}^2$ 일때, $\triangle DEF$ 의 넓이를 구하여라.


 > 정답:
 32 cm²

▶ 답:

 $\triangle DEF = \frac{1}{2} \triangle AEF = \frac{1}{2} \times \frac{4}{9} \triangle ABC = \frac{2}{9} \times 144 = 32 \text{ (cm}^2\text{)}$

 $\underline{\rm cm^2}$

9. $\triangle ABC$ 에서 \overline{DE} $/\!/ \overline{BC}$ 이다. $\triangle ADE = 20 \mathrm{cm}^2$ 일 때, 색칠된 부분의 넓이는?

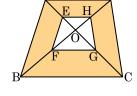
 $425 \mathrm{cm}^2$

- $2 12 \text{cm}^2$
- $3 15 \text{cm}^2$
- $\Im 30 \text{cm}^2$

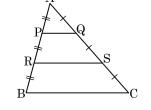
ΔADE 와 ΔABC 의 닮음비는 8 : 12 = 2 : 3이므로,

해설

넓이의 비는 4:9이다. 따라서 $4:9=20:\Delta ABC$ 이므로 $\Delta ABC=45(cm^2)$ 색칠된 부분의 넓이는 $\Delta ABC-\Delta ADE=45-20=25(cm^2)$ 이다.


- 10. 다음 그림과 같은 두 사각형은 닮음이다. $\overline{\mathrm{OE}} \; : \; \overline{\mathrm{EA}} = \!\! 3 : 4$ 이코 $\square \mathrm{ABCD}$ 가 $147\,\mathrm{cm}^2$ 일 때, 색칠한 부분의 넓이를 구하면?
 - ① $100\,\mathrm{cm}^2$ ② $110 \, \text{cm}^2$ $3120\,\mathrm{cm}^2$
 - $4 130 \, \text{cm}^2$

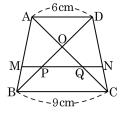
해설


 $\square ABCD \circlearrowleft \square EFGH$ 닮음비가 7 : 3이므로 넓이의 비는

 $7^2:3^2$ 이다. $147: \square EFGH = 49:9$

 $\Box EFGH = 27(\,\mathrm{cm}^2)$ ∴ (색칠한 부분의 넓이) = 147 - 27 = 120(cm²)

11. 다음 그림에서 점 P, R 과 Q, S 는 각 각 ĀB, ĀC 의 삼등분점일 때, △APQ, □PRSQ, □RBCS 의 넓이의 비에 관하여 다음 중 옳지 <u>않은</u> 것은?



- △APQ, △ARS, △ABC 의 닮음비가 1:2:3 이다.
 △APQ, △ARS, △ABC 의 넓이의 비는 1:4:9 이다.
- ③ △APQ : □PRSQ : □RBCS 의 넓이의 비는 1 : 4 : 9 이다.
- ④ △APQ : □PRSQ : □RBCS 의 넓이의 비는 1 : 3 : 5 이다.
- ⑤ 닮음인 도형의 닮음비가 m:n:l 일 때, 넓이의 비는
- $m^2:n^2:l^2$ 이다.

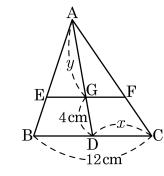
③ △APQ : □PRSQ : □RBCS 의 넓이의 비는 1 : (4 - 1) :

(9-4) = 1 : 3 : 5 이다.

12. 다음 그림은 $\overline{AD} /\!\!/ \overline{BC}$ 인 사다리꼴이다. $\overline{AD} /\!\!/ \overline{MN}, \overline{AM} : \overline{MB} = 2 : 1$ 이고 $\triangle AOD =$ 12 cm² 일 때, □PBCQ 의 넓이를 구하여라.

▶ 답:

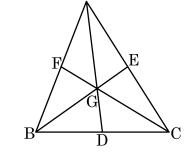
 $\underline{\mathrm{cm}^2}$


ightharpoonup 정답: $rac{65}{3}
m cm^2$

 $\overline{PQ} = \frac{2 \times 9 - 1 \times 6}{2 + 1} = \frac{12}{3} = 4(\,\mathrm{cm})$

ΔOPQ, ΔOBC 의 닮음비는 4 : 9 넓이의 비는 16 : 81 이므로

16:81 = △OPQ:27 ∴ △OPQ = $\frac{16}{3}$ (cm²) □PBCQ = 27 - $\frac{16}{3}$ = $\frac{65}{3}$ (cm²)


13. 다음 그림에서 점 G는 \triangle ABC의 무게중심일 때, $\frac{x}{y}$ 의 값은?

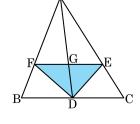
- $\bigcirc 0.75$ $\bigcirc 4 \frac{4}{5}$ $\bigcirc 5 \frac{4}{3}$ ① 0.35 ② 0.5
 - $\overline{\mathrm{BD}} = \overline{\mathrm{CD}} = x(\mathrm{\,cm})$ 이므로 x = 62:1=y:4y=8

 $\therefore \frac{x}{y} = \frac{6}{8} = 0.75$

14. 다음 그림에서 점 G 가 ΔABC 의 무게중심일 때, 다음 중 옳지 \underline{cc}

- $\overline{\text{Q}}\overline{\text{AG}} = \overline{\text{BG}} = \overline{\text{CG}}$ $\textcircled{4} \triangle AGC = \triangle BCG$
- \bigcirc $\triangle ABC = 6 \triangle AGE$

점 G 가 $\triangle ABC$ 의 무게중심이므로 $\overline{AG}=\frac{2}{3}\overline{AD},\ \overline{BG}=$ $\frac{2}{3}\overline{\text{BE}},\ \overline{\text{CG}}=\frac{2}{3}\overline{\text{CF}}$ 이고, $\triangle \text{ABC}$ 의 세 중선 $\overline{\text{AD}},\ \overline{\text{BE}},\ \overline{\text{CF}}$ 의 길이가 서로 같은지 알 수 없으므로 \overline{AG} , \overline{BG} , \overline{CG} 는 서로 같다고 할 수 없다. 15. 다음 그림의 평행사변형 ABCD 에서 점 E 는 \overline{BC} 의 중점이다. $\Delta AGO = 4\,\mathrm{cm}^2$ 일 때, $\Box ABCD$ 의 넓이를 구하여라.


 $\frac{\mathrm{cm}^2}{\mathrm{E}}$

정답: 48 cm²

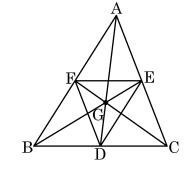
▶ 답:

점 G 는 ΔABC 의 무게중심이므로

 $\triangle ABC = 6\triangle AGO = 6 \times 4 = 24 \text{ (cm}^2\text{)}$ $\therefore \Box ABCD = 2\triangle ABC = 2 \times 24 = 48 \text{ (cm}^2\text{)}$ 16. 다음 그림에서 점 G 는 $\triangle ABC$ 의 무게중심이다. $\overline{EF} /\!\!/ \overline{BC}$ 이고 $\triangle ABC = 36\,\mathrm{cm}^2$ 일 때, △EDF 의 넓이를 구하여라.

▷ 정답: 8 cm²

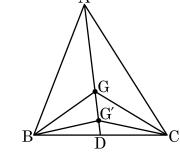
 $\underline{\mathrm{cm}^2}$


▶ 답:

 $\triangle EDF = 2\triangle EDG = 2 \times \frac{1}{3}\triangle AED$ $= \frac{2}{3} \times \frac{2}{3}\triangle ABD$ $= \frac{4}{9} \times \frac{1}{2}\triangle ABC$ $= \frac{2}{9}\triangle ABC = \frac{2}{9} \times 36$ $= 8 \text{ (cm}^2)$

$$= \frac{4}{9} \times \frac{1}{2} \triangle ABC$$

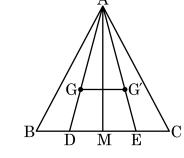
$$= \frac{2}{9} \triangle ABC = \frac{2}{9}$$


17. 다음 그림에서 점 G가 \triangle ABC의 무게중심일 때, 다음 중 옳지 $\underline{\&}$ 은? 것은?

④ △ABC 의 무게중심과 △EDF 의 무게중심은 같다.

△ABC 의 무게중심과 △EDF 의 무게중심은 같음

18. 다음 그림에서 점 G, G'은 각각 $\triangle ABC$, $\triangle GBC$ 의 무게중심이다. $\triangle GG'C=6cm^2$ 일 때, $\triangle ABC$ 의 넓이를 구하여라.


 $\underline{\mathrm{cm}^2}$

 ▶ 정답:
 54<u>cm²</u>

▶ 답:

 $\triangle GG'C = \frac{1}{3}\triangle GBC$ 이므로 $\triangle GBC = 3\triangle GG'C = 18(cm^2)$ $\triangle GBC = \frac{1}{3}\triangle ABC$ 이므로 $\therefore \triangle ABC = 3\triangle GBC = 54(cm^2)$

 ${f 19}$. 다음 그림과 같이 ${f \overline{AB}}={f \overline{AC}}$ 인 이등변삼각형 ${f ABC}$ 에서 점 ${f M}$ 은 ${f \overline{BC}}$ 위의 점이고, 두 점 G,G'은 각각 $\triangle ABM$, $\triangle AMC$ 의 무게중심이다. $\overline{\mathrm{GG'}} = 10\mathrm{cm}$ 일 때, $\overline{\mathrm{BC}}$ 의 길이는?

 $3 \ 25 cm$

(5) 30cm

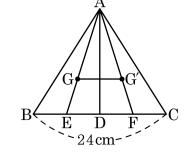
④ 27cm

 $\triangle \mathrm{ADE}$ 에서 $\overline{\mathrm{AG}}:\overline{\mathrm{AD}}=\overline{\mathrm{AG'}}:\overline{\mathrm{AE}}=2:3$ 이므로 $\overline{\mathrm{GG'}}:\overline{\mathrm{DE}}=2:3,\ \cree{1.5pt}\stackrel{?}{\rightleftharpoons}10:\overline{\mathrm{DE}}=2:3$

 $\therefore \overline{\rm DE} = 15 (\rm cm)$

② 22cm

또, 두 점 G, G' 은 각각 \triangle ABM, \triangle AMC 의 무게중심이므로

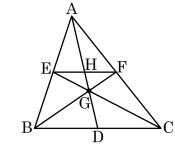

 $\overline{\mathrm{BD}} = \overline{\mathrm{DM}}, \overline{\mathrm{ME}} = \overline{\mathrm{EC}}$ $\therefore \ \overline{BC} = \overline{BD} + \overline{DM} + \overline{ME} + \overline{EC} = 2(\overline{DM} + \overline{ME}) = 2\overline{DE} =$

 $30(\mathrm{\,cm})$

 \bigcirc 20cm

해설

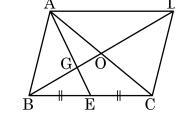
20. 다음 그림의 $\triangle ABC$ 는 $\overline{BC}=24\,\mathrm{cm}$ 인 이등변삼각형이다. \overline{BC} 의 중점을 D , $\triangle ABD$ 와 $\triangle ADC$ 의 무게중심을 각각 G, G' 라 할 때, $\overline{GG'}$ 의 길이를 구하여라.


 $\underline{\mathrm{cm}}$

▷ 정답: 8 cm

답:

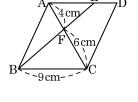
 $\overline{\overline{AG}} : \overline{AE} = \overline{AG'} : \overline{AF} = \overline{GG'} : \overline{EF} = 2 : 3$ $\overline{\overline{GG'}} = \frac{2}{3}\overline{EF} = \frac{2}{3} \times \frac{1}{2}\overline{BC} = \frac{2}{3} \times \frac{1}{2} \times 24 = 8(cm)$


21. 다음 그림에서 점 G가 \triangle ABC의 무게중심일 때, $\overline{AH}:\overline{HG}:\overline{GD}$ 를 구하면?

- ④ 3:2:1
- ① 4:2:3 ② 3:2:3**③**3:1:2
- ③ 2:1:2

지점 = $\frac{2}{3}$ 지D, $\overline{AH} = \frac{1}{2}$ 지D 이므로 $\overline{HG} = \overline{AG} - \overline{AH} = \frac{1}{6}$ 지D, $\overline{GD} = \frac{1}{3}$ 지D $\therefore \overline{AH} : \overline{HG} : \overline{GD} = \frac{1}{2}\overline{AD} : \frac{1}{6}\overline{AD} : \frac{1}{3}\overline{AD} = 3 : 1 : 2$

22. 다음 그림의 평행사변형 ABCD 에서 점 E 는 \overline{BC} 의 중점이다. $\triangle AGO = 6 \, \mathrm{cm}^2$ 일 때, $\Box ABCD$ 의 넓이를 바르게 구한 것은?


 $4 84 \, \text{cm}^2$

- ② $60 \, \text{cm}^2$ ③ $96 \, \text{cm}^2$
- $372 \,\mathrm{cm}^2$

점 G 는 \triangle ABC 의 무게중심이므로

 $\triangle ABC = 6\triangle AGO = 6 \times 6 = 36 \text{ (cm}^2\text{)}$ $\therefore \Box ABCD = 2\triangle ABC = 2 \times 36 = 72 \text{ (cm}^2\text{)}$

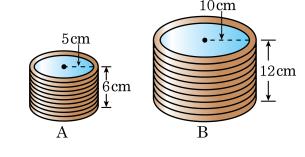
 ${f 23}$. 다음 평행사변형 ABCD 의 변 AD 위의 점 E 와 꼭짓점 B 를 이은 선분이 대각선 AC 와 점 F 에서 만나고 $\overline{AF}=4\mathrm{cm},\overline{CF}=6\mathrm{cm},\overline{BC}=$ 9cm 이다. 선분 AE 의 길이를 구하여라.

▶ 답: ▷ 정답: 6<u>cm</u>

 $\underline{\mathrm{cm}}$

△AFE ∽ △CFB 이므로

 $4:6=\overline{AE}:9$ $\therefore \overline{AE} = 6cm$


 ${f 24.}$ 다음 그림에서 $\overline{
m DE}$, $\overline{
m EF}$, $\overline{
m FD}$ 중에서 ${\it \triangle}{
m ABC}$ 의 변에 평행한 선분의 길이는?

- ① $\frac{52}{7}$ ② $\frac{54}{7}$ ③ $\frac{57}{5}$ ④ $\frac{60}{5}$ ⑤ $\frac{63}{5}$

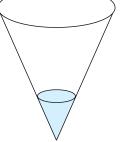
 $9:6=5:rac{10}{3}$ 이므로 $\overline{
m FE}\,/\!/\,\overline{
m AB}$

 $\overline{\text{CF}} : \overline{\text{CA}} = \overline{\text{FE}} : \overline{\text{AB}} , 9 : 14 = \overline{\text{FE}} : 12$ $14\overline{\text{FE}} = 108$ $\therefore \overline{\text{FE}} = \frac{54}{7}$

25. 수돗물을 이용하여 A 물통에 물을 채우는데 2 시간이 걸렸다. B 물통에 물을 채우는데 걸리는 시간을 구하면?

④ 15 시간

① 12 시간


- ② 13 시간 **⑤**16 시간
- ③ 14 시간

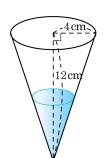
해설

A 물통과 B 물통은 서로 닮은 원기둥이고 닮음비는 밑변의 반

지름의 길이의 비와 같으므로 닮음비는 1:2 이다. 부피의 비는 $1^3:2^3=1:8$ 이므로 A 물통을 채우는데 2 시간 걸리면 B 물통을 채우는데 걸리는 시간은 $2 \times 8 = 16$ (시간) 이다.

26. 다음과 같은 원뿔 모양의 그릇에 일정한 속 도로 물을 채우고 있다. 전체 높이의 $\frac{1}{3}$ 만큼 채우는 데 20분이 걸렸다면 가득 채울 때까 지 시간이 얼마나 더 걸리겠는지 구하여라.

답:


▷ 정답: 8시간 40분

20분 동안 채운 물의 양과 그릇의 부피의 비는 $1^3:3^3=1:27$ 물을 채우는 데 걸리는 시간과 채워지는 물의 양은 정비례하므로

물을 그릇에 가득 채울 때까지 걸리는 시간을 x분이라 하면 20: x = 1:26따라서 x = 520(분)이므로

물을 가득 채울 때까지 8시간 40분이 더 걸린다

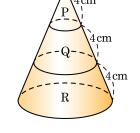
- 27. 다음 그림과 같은 원뿔모양의 그릇에 물을 부어서 높이의 $\frac{1}{2}$ 만큼 채웠다고 할 때, 수면의 넓이를 알 맞게 구한 것은?
 - ① πcm^2 ② $4\pi \text{cm}^2$ ③ $6\pi \text{cm}^2$
 - (4) $8\pi \text{cm}^2$ (5) $10\pi \text{cm}^2$

닮음비가 1 : 2 이므로 넓이의 비는 1 : 4 이다.

따라서 수면의 넓이는 $\frac{1}{4} \times 16\pi = 4\pi (\text{ cm}^2)$ 이다.

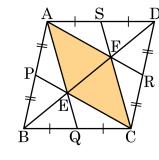
28. 지름의 길이가 2 cm 인 쇠구슬을 녹여서 지름이 12 cm 인 쇠공을 만들 려고 한다. 쇠구슬은 몇 개가 필요한지 구하여라. ▶ 답:

개 ▷ 정답: 216 <u>개</u>


해설

닮음비가 2:12=1:6 이므로 부피의 비는 $1^3:6^3=1:216$ 따라서, 쇠구슬은 216 개 필요하다.

- 29. 다음 그림과 같이 원뿔을 밑면과 평행인 평면 으로 잘랐을 때 생기는 도형 P, Q, R 의 부피 의 비는?
 - ① 1:8:27② 1:7:16 4:8:27
 - **3**1:7:19
- ⑤ 1:7:27


해설

세 원뿔의 부피의 비가 1:8:27 이므로 $P,\ Q,\ R$ 의 부피비는

1:(8-1):(27-8)=1:7:19

30. 다음 그림과 같은 평행사변형 ABCD 에서 각 변의 중점을 P, Q, R, S 라 하고 $\Delta EQC = 5$ 일 때, $\Box AECF$ 의 넓이를 구하면?

① 18

20

③ 36

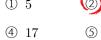
42

⑤ 48

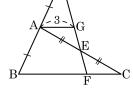
점 A 와 점 C , 점 B 와 점 D 를 연결하고 \overline{AC} , \overline{BD} 의 교점을 O

해설

라 하자. 평행사변형의 대각선은 서로 다른 것을 이등분하므로 $\overline{AO} = \overline{CO}$, $\overline{BO} = \overline{DO}$ 이다. $\triangle ABC$ 에서 \overline{AQ} , \overline{BO} 는 중선이므로 점 E 는 무게중심이고,


 \triangle ACD 에서 \overline{AR} , \overline{DO} 는 중선이므로 점 F 는 무게중심이다.

 $\triangle EQC = \frac{1}{6}\triangle ABC = \frac{1}{12}\Box ABCD = 5 \Rightarrow \Box ABCD = 60,$ $\triangle AEC = \frac{1}{3}\triangle ABC = \frac{1}{6}\Box ABCD = 10$ 이다.


3 6 따라서 □AECF = 10 × 2 = 20 이다.

31. 다음 $\triangle ABC$ 에서 \overline{AB} 의 연장선 위에 \overline{AB} = $\overline{\mathrm{AD}}$ 인 점D 를 잡았다. $\overline{\mathrm{AE}} = \overline{\mathrm{CE}}$ 인 점 E 에 대하여 $\overline{\mathrm{DE}}$ 의 연장선과 $\overline{\mathrm{BC}}$ 가 만나는 점 을 F 라고 할 때, \overline{BC} 의 길이를 구하면? ③ 12

① 5

⑤ 20

 $\angle GAE = \angle ECF()$ 文각), $\angle AEG = \angle FEC(맞꼭지각)$, $\overline{AE} = \overline{CE}$

 $\therefore \triangle \mathrm{EGA} = \triangle \mathrm{EFC}(\mathrm{ASA}$ 합동) $\therefore \overline{\mathrm{CF}} = \overline{\mathrm{AG}} = 3, \overline{\mathrm{BF}} = 2\overline{\mathrm{AG}} = 6$

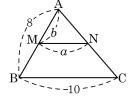
 $\therefore 3 + 6 = 9$

해설

${f 32}$. 다음 그림에서 ${f AD}$ # ${f BC}$ 이고, 점 E, F 는 각 각 \overline{AB} , \overline{AC} 의 중점일 때, \overline{BC} 의 길이는?

② 8 cm \bigcirc 6 cm $412 \, \mathrm{cm}$ \bigcirc 14 cm

 $\xrightarrow{4 \text{ cm}}$ D


삼각형의 중점연결정리에 의해,

해설

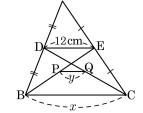
 $\overline{\mathrm{EG}} = 2\,\mathrm{cm}$ $\therefore \overline{\mathrm{EF}} = 5\,\mathrm{cm}$ 따라서 $\overline{\mathrm{BC}} = 10\,\mathrm{cm}$

 ${f 33.}$ 다음 그림에서 점 M 은 ${f \overline{AB}}$ 의 중점이고, $\overline{\text{MN}} / / \overline{\text{BC}}$ 이다. a + b = ?

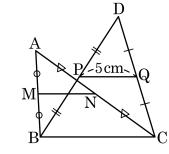
 $\bigcirc 5 \quad \bigcirc 6 \quad \bigcirc 7 \quad \bigcirc 8 \quad \bigcirc 9$

a = 5, b = 4

 $\therefore a+b=9$


34. ΔABC 에서 점 D, E 는 각각 $\overline{\text{AB}}$, $\overline{\text{AC}}$ 의 중점일 때, x+y 의 값은? (단, P, Q 는 각각 BE, DC 의 중점)

> ① 24 ② 27 ⑤ 32



삼각형의 중점연결정리에 의해

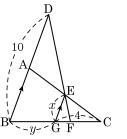
 $x = 2\overline{\rm DE} = 24, y = \frac{1}{2}(24 - 12) = 6$ 따라서 x + y = 30

35. 다음 그림에서 점 M, N, P, Q 는 각각 \overline{AB} , \overline{AC} , \overline{DB} , \overline{DC} 의 중점이다. $\overline{PQ}=5\mathrm{cm}$ 일 때, \overline{MN} 의 길이는?

 \bigcirc 3cm

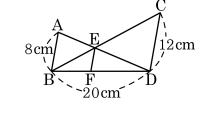
② 4cm ⑤ 5.5cm

3 4.5 cm


45cm

점 P, Q가 각각 $\overline{\rm DB}$, $\overline{\rm DC}$ 의 중점이므로 $\overline{\rm BC}=2\overline{\rm PQ}=2\times 5=10 {
m (cm)}$ 이다. 따라서 점 M, N이 각각 $\overline{\rm AB}$, $\overline{\rm AC}$ 의 중점이므로 $\overline{\mathrm{MN}} = \frac{1}{2}\overline{\mathrm{BC}} = \frac{1}{2} \times 10 = 5 \mathrm{(cm)}$ 이다.

 ${f 36.}$ 다음 그림과 같이 $\overline{
m AB}=\overline{
m AD}, \overline{
m AE}=\overline{
m EC}$ 일 때, 2x - y 의 값은?


해설

① 0 ②1 ③ 2 ④ 3 ⑤ 4

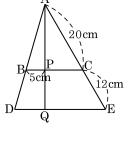
x = 2.5, y = 4 : 2x - y = 1

37. 다음 그림에서 \overline{AB} // \overline{EF} // \overline{CD} 일 때, \overline{BF} 의 길이를 구하여라.

 ► 답:

 ▷ 정답:
 8 cm

<u>cm</u>


<u>AE</u> : <u>ED</u> = 2 : 3 이므로

 $\overline{BF} : \overline{FD} = 2 : 3$ $\overline{BF} : \overline{BD} = 2 : 5$

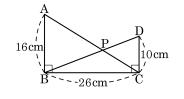
 $\overline{BF}: DD = 2:5$

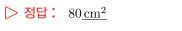
 $\overline{\mathrm{BF}} = 8\mathrm{cm}$

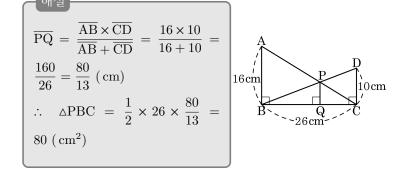
38. 다음 그림의 $\triangle ABC$ 에서 \overline{BC} $/\!/ \overline{DE}$ 일 때, \overline{DQ} 의 길이를 구하여라.

정답: 8 cm

 $\underline{\mathrm{cm}}$

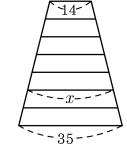

▶ 답:


 $\overline{AC} : \overline{AE} = \overline{AB} : \overline{AD} = \overline{BP} : \overline{DQ}$ 20: 32 = 5: \overline{DQ}

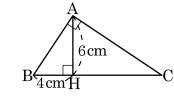

 $\overline{DQ} = 8 \text{ (cm)}$

39. 다음 그림에서 △PBC 의 넓이를 구하여라.

▶ 답:



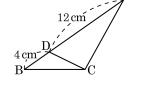
 $\underline{\mathrm{cm}^2}$


40. 다음 그림과 같은 7단짜리 뜀틀이 있다. 가장 윗부분의 길이가 14이고, 가장 아랫부분의 너비가 35일 때, x의 길이를 구하여라. (단, 1~7 단까지의 뜀틀의 높이는 모두 일정하다.)

▷ 정답: 29

답:

41. $\angle A$ 가 직각인 $\triangle ABC$ 에서 $\overline{AH} \bot \overline{BC}$ 일 때, $\triangle AHC$ 의 넓이를 구하면?


- ① 18cm² ④ 40cm²
- $27cm^{2}$ $42cm^{2}$
- 36cm^2
- ⊕ 42cm

 $\overline{AH^2} = \overline{BH} \cdot \overline{CH}$ $36 - 4 \times \overline{CH} \cdot \overline{CH}$

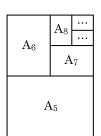
 $36 = 4 \times \overline{\text{CH}} , \overline{\text{CH}} = 9(\text{cm})$ $\therefore (\triangle \text{AHC 의 넓이}) = \frac{1}{2} \times 9 \times 6 = 27(\text{cm}^2)$

2

42. 다음 그림에서 $\triangle ABC$ 와 $\triangle CBD$ 가 닮은 도 형일 때, $\overline{\mathrm{BC}}$ 의 길이를 구하여라.

▶ 답: ▷ 정답: 8cm

 $\underline{\mathrm{cm}}$

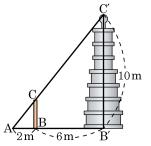

해설

 $\triangle ABC \circlearrowleft \triangle CBD$

 $\overline{AB} : \overline{CB} = \overline{BC} : \overline{BD}$ $\begin{array}{l}
16 : \overline{BC} = \overline{BC} : 4 \\
\overline{BC}^2 = 64
\end{array}$

 $\therefore \overline{BC} = 8 \, \text{cm} \, \left(\because \overline{BC} > 0 \right)$

43. A_4 용지를 다음 그림과 같이 반씩 접어보고, 접을 때마다 종이의 크기를 각각 $A_5, A_6, A_7 \cdots$ 이라고 할 때, A_6 용지의 가로와 세로의 길이는?(단 A_4 용지의 가로의 길이는 210mm , 세로의 길이는 297mm 이다)



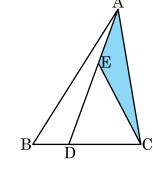
② 가로: $210 \,\mathrm{mm}$, 세로: $\frac{297}{2} \,\mathrm{mm}$ ③ 가로: $105 \,\mathrm{mm}$, 세로: $\frac{297}{2} \,\mathrm{mm}$ ④ 가로: $105 \,\mathrm{mm}$, 세로: $\frac{297}{4} \,\mathrm{mm}$ ⑤ 가로: $105 \,\mathrm{mm}$, 세로: $\frac{297}{4} \,\mathrm{mm}$

① 가로: 210 mm, 세로: 297 mm

종이를 계속 반으로 접을 때마다 종이의 가로와 세로의 길이는 $A_4:210,297$, $A_5:210,\frac{297}{2}$, $A_6:\frac{210}{2},\frac{297}{2}$, $A_7:\frac{210}{2},\frac{297}{4}$ \cdots 로 줄어든다. 따라서 $A_6\left(105,\frac{297}{2}\right)$ 이다.

44. 막대의 높이를 재기 위하여 탑의 그림자 $\frac{1}{4}$ A 에서 $2\,\mathrm{m}$ 떨어진 지점 B 에 막대를 세워 그 그림자의 끝이 탑의 그림자의 끝 과 일치하게 하였다. 막대와 탑 사이의 거리가 $6\,\mathrm{m}$ 일 때, 막대의 높이를 구하 면?

 \bigcirc 2.5 m

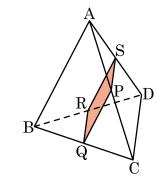

② 3 m ③ 3.3 m ④ 4 m

 $\ \ \ \ \ 4.2\,\mathrm{m}$

 $\triangle ABC$ \hookrightarrow $\triangle AB'C'$ 이므로 $2:8=\overline{CB}:10$

 $\therefore \overline{\rm CB} = 2.5\,\rm m$

45. $\triangle ABC$ 의 넓이가 $180~{\rm cm^2}$ 이고 $\overline{BD}:\overline{DC}=1:2,\overline{AE}:\overline{ED}=2:3$ 일 때, $\triangle AEC$ 의 넓이를 구하여라.

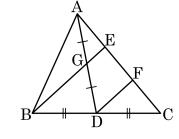

 $\underline{\mathrm{cm}^2}$

 ▶ 정답: 48 cm²

답:

 $\triangle AEC = \frac{2}{5} \times \triangle ADC$ $= \frac{2}{5} \times \frac{2}{3} \times \triangle ABC$ $= \frac{4}{15} \times \triangle ABC$ $= \frac{4}{15} \times 180 = 48 \text{ (cm}^2\text{)}$

 ${f 46}$. 한 변의 길이가 ${f 5}$ 인 정사면체 ${f A}$ – BCD의 각 모서리의 중점을 연결 해서 만든 □PQRS의 둘레의 길이는?



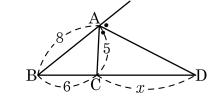
- ① 6 ② 7 ③ 8 ④ 9
- **⑤**10

$$\overline{PQ} = \overline{QR} = \overline{PS} = \overline{SR} = \frac{1}{2}\overline{AB} = \frac{1}{2} \times 5 = \frac{5}{2}$$
이므로
$$(\Box PQRS의 둘레의 길이) = \overline{PQ} + \overline{SR} + \overline{QR} + \overline{PS}$$
$$= 4 \times \frac{5}{2} = 10$$
이다.

$$=4 \times \frac{5}{2} = 10$$
이다.

47. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{BD}=\overline{DC},\overline{AG}=\overline{GD}$ 이고, \overline{BE} $/\!/\,\overline{DF}$ 이다. $\overline{DF}=6\mathrm{cm}$ 일 때, \overline{BG} 의 길이는?

49 cm


 $\textcircled{1} \ 8\,\mathrm{cm}$

- ② $\frac{25}{3}$ cm 3 $\frac{26}{3}$ cm 3 $\frac{28}{3}$ cm

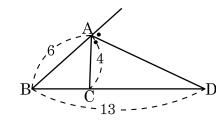
 ΔBCE 에서 $\overline{BE} = 2\overline{DF} = 12 (\,\mathrm{cm})$

 $\triangle ADF$ 에서 $\overline{GE} = \frac{1}{2}\overline{DF} = 3(\text{ cm})$ $\therefore \overline{BG} = \overline{BE} - \overline{GE} = 12 - 3 = 9$

48. 다음 그림과 같이 $\triangle ABC$ 에서 $\angle A$ 의 외각의 이등분선과 \overline{BC} 의 연장 선과의 교점을 D 라 할 때, $\triangle ABC$: $\triangle ACD$ 는?

① 8:5 ② 5:8

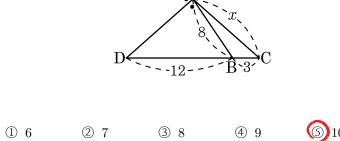
33:5


4 5:3
5 8:3

 $\overline{\mathrm{AB}}: \ \overline{\mathrm{AC}} = \overline{\mathrm{BD}}: \ \overline{\mathrm{CD}}$ 이므로 $8: \ 5 = (6+x): \ x$ 3x = 30

 $\therefore x = 10$

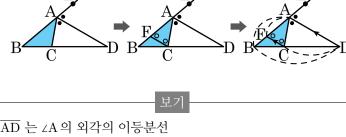
 ΔABC , ΔACD 는 높이가 같으므로 밑변의 비가 넓이의 비가 된다. 따라서 밑변의 비는 6:10 이므로 넓이의 비는 3:5 이다.


49. 다음 그림과 같은 삼각형에서 $\overline{AB}=6,\ \overline{AC}=4,\ \overline{BD}=13$ 일 때, \overline{CD} 의 길이를 구하여라.

- ① 7
- ② ·
- ③ 8
- (4) =
- ⑤ 9

 $6: 4 = 13: \overline{CD}$ $\therefore \overline{CD} = \frac{26}{3}$

50. 다음 그림에서 $\overline{\mathrm{AD}}$ 가 $\angle \mathrm{A}$ 의 외각의 이등분선일 때, x 의 값은?

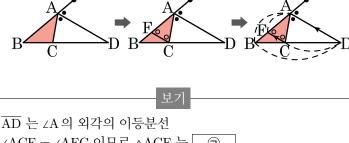


⑤10

x:8=(12+3):12 이므로

x = 10

51. 다음은 삼각형의 외각의 이등분선으로 생기는 선분의 비를 구하는 과정이다. 빈칸에 알맞은 말을 차례대로 나열하면?



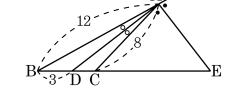
보기
AD 는 ∠A의 외각의 이등분선
∠ACF = ① 이므로 ΔACF는 이등변삼각형
AD // FC 에서 AB : AC = BD : ②

① $\angle ACD$, \overline{BC} ② $\angle ACD$, \overline{CD} ③ $\angle ACD$, \overline{AB}

해설 ΔBDA에서 $\overline{BA}: \overline{FA} = \overline{BD}: \overline{CD}$ 이다.

52. 다음은 삼각형의 외각의 이등분선으로 생기는 선분의 비를 구하는 과정이다. 빈칸에 알맞은 것을 고르면?

보기
AD 는 ∠A의 외각의 이등분선
∠ACF = ∠AFC 이므로 △ACF 는 ⑤
AD // FC 에서 AB : AC = ⑥ : CD


③ 정삼각형, BD

① 직각삼각형, $\overline{\mathrm{BC}}$

- ② 예각삼각형, $\overline{
 m BD}$
- ⑤이등변삼각형, BD
- ④ 이등변삼각형, $\overline{
 m BC}$

 $\triangle \mathrm{BDA}$ 에서 $\overline{\mathrm{BA}}:\overline{\mathrm{FA}}=\overline{\mathrm{BD}}:\overline{\mathrm{CD}}$ 이다.

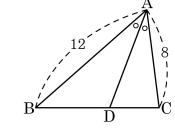
53. 다음 그림의 $\triangle ABC$ 에서 \overline{AD} , \overline{AE} 가 각각 $\angle A$ 의 내각과 외각의 이등 분선일 때, \overline{CE} 의 길이를 구하여라.

▷ 정답: 10

답:

해설

 ΔABC 에서 삼각형의 내각의 이등분선의 정리에 의해 \overline{AB} :


 $\overline{AC} = \overline{BD} : \overline{DC}$ 이므로 $12 : 8 = 3 : \overline{DC}$ 가 된다. 따라서 $\overline{DC} = 2$ 이다.

또한, $\triangle ABC$ 에서 삼각형의 외각의 이등분선의 정리에 의해 $\overline{AB}:\overline{AC}=\overline{BE}:\overline{CE}$ 이므로

AB : AC = BE : CE 이므로 12 : 8 = (5 + CE) : CE 가 된다.

 $8 \times (5 + \overline{\text{CE}}) = 12 \times \overline{\text{CE}}$, 따라서 $\overline{\text{CE}} = 10$ 이다.

54. 다음 그림의 $\triangle ABC$ 에서 \overline{AD} 가 $\angle A$ 의 이등분선이고, $\triangle ABC$ 의 넓이 가 $35 \mathrm{cm}^2$ 일 때, $\triangle ABD$ 와 $\triangle ADC$ 의 넓이의 차는?

 $10^{7} cm^2$ $40^{2} cm^2$

② 9cm^2 ③ 24cm^2

 $3 14 \text{cm}^2$

0 -----

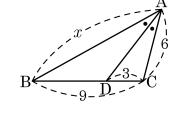
 $\overline{\mathrm{AD}}$ 는 A 의 이등분선이므로 $\overline{\mathrm{AB}}:\overline{\mathrm{AC}}=\overline{\mathrm{BD}}:\overline{\mathrm{DC}}=3:2$

 \triangle ABD 와 \triangle ADC 에서 높이는 같고, 밑변이 3:2 이므로 \triangle ABD : \triangle BDC =3:2 이다. \triangle ABD $=\frac{3}{5}\triangle$ ABC $=\frac{3}{5}\times35=21$

$$\triangle ACD = \frac{2}{5} \triangle ABC = \frac{2}{5} \times 35 = 14$$

짓점 B, C 에서 AD 또는 그 연장선 위에 내린 수선의 발을 각각 E, F 라 할 때, BD : DC 의 값은? ① 4:3 ②2:3 ③ 7:6

55. $\triangle ABC$ 에서 \overline{AD} 는 $\angle A$ 의 이등분선이고, 꼭

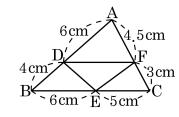

- 4cm B D C
- ④ 2:1
 ⑤ 3:2

 $\triangle ABE$ $\bigcirc \triangle ACF$ 이므로 $\overline{AB}:\overline{AC}=\overline{BE}:\overline{CF}=2:3$ 이고,

해설

 $\triangle BDE \bigcirc \triangle CDF$ 이므로 $\overline{BE}: \overline{CF} = \overline{BD}: \overline{CD}$ 이다. 따라서 $\overline{AB}: \overline{AC} = \overline{BD}: \overline{CD} = 2:3$ 이다.

56. 다음 그림의 $\triangle ABC$ 에서 $\angle BAD = \angle DAC$ 일 때, x 의 값을 구하여라.



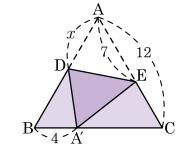
 답:

 ▷ 정답: x = 12

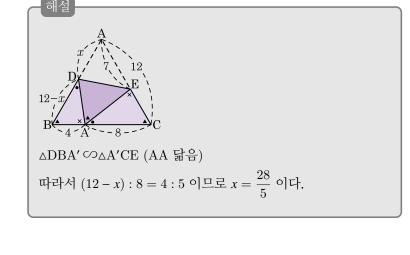
 $\overline{AB}: \overline{AC} = \overline{BD}: \overline{CD}$ 이므로 x: 6=6:3 이다. 따라서 x=12 이다.

57. 다음 그림과 같은 \triangle ABC 에서 옳은 것을 모두 고르면?

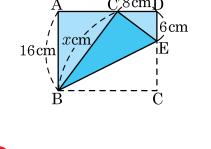
 \bigcirc $\overline{\mathrm{DF}}//\overline{\mathrm{BC}}$ $\ \, \overline{AC}//\overline{DE}$


② $\overline{\mathrm{DF}} = \frac{22}{3}$ 이다. **④**△CAB ∽△FAD

⑤ ∆BAC ∽∆BDE


① $\triangle ABC$ 에서 $\overline{AD}: \overline{DB} = \overline{AF}: \overline{FC} = 3:2$ 이므로 $\overline{DF}//\overline{BC}$ 이다. ② $6:10=\overline{\mathrm{DF}}:11$ 이므로 $\overline{\mathrm{DF}}=\frac{33}{5}$ 이다.

④ ∠A 가 공통, ∠ABC = ∠ADF (동위각)이므로 △CAB ♡△FAD (AA 닮음)이다.


58. 다음 그림과 같이 정삼각형 모양의 종이 $\triangle ABC$ 를 꼭짓점 A 가 \overline{BC} 의 점 A' 에 오도록 접었을 때, x 의 값을 구하여라.

- ① $\frac{11}{5}$ ② $\frac{21}{25}$ ③ $\frac{26}{5}$ ④ $\frac{28}{5}$ ⑤ $\frac{29}{2}$

59. 다음 그림의 직사각형 ABCD 에서 $\overline{\text{BE}}$ 를 접는 선으로 꼭짓점 $\overline{\text{C}}$ 가 변 AD 위의 점 $\overline{\text{C}}'$ 에 오도록 접었을 때, x 의 값은?

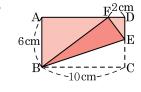
① 18

20

③ 22

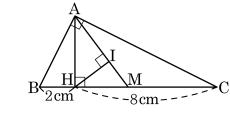
4 24

⑤ 26


접어 올린 삼각형이므로 $\overline{\mathrm{EC}} = \overline{\mathrm{EC'}}$ 이다.

해설

 $\angle ABC' + \angle AC'B = \angle AC'B + \angle EC'D = 90^{\circ}$ $\Rightarrow \angle ABC' = \angle EC'D \cdots \bigcirc$ $\angle A = \angle D = 90^{\circ} \cdots \bigcirc$ \bigcirc, \bigcirc 에 의해 $\triangle ABC' \hookrightarrow \triangle DC'E$ $\overline{AB} : \overline{DC'} = \overline{BC'} : \overline{C'E} \circ \Box \Box \exists 16 : 8 = x : 10$


 $\therefore x = 20$

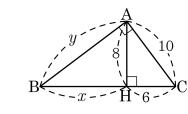
- 60. 직사각형 ABCD 에서 $\overline{\text{BE}}$ 를 접는 선으로 하여 점 C 가 점 F 에 오도록 접은 것이다. EF 의 길이는?
 - ① $\frac{5}{3}$ cm ② $\frac{7}{3}$ cm ③ $\frac{10}{3}$ cm
 - 4 cm 5 cm

 $\triangle ABF$ \hookrightarrow $\triangle DFE(AA닮음)$ 이므로 $6:2=10:\overline{EF}$ $6\overline{EF}=20$ $\therefore \overline{\mathrm{EF}} = \frac{10}{3} (\,\mathrm{cm})$

 $\mathbf{61}$. 다음 직각삼각형 ABC 에서 점 M 은 $\overline{\mathrm{BC}}$ 의 중점이다. $\overline{\mathrm{HI}}$ 의 길이는?

$$4 \frac{11}{6} \text{cn}$$

$$\frac{2}{5}$$
 cm

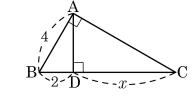

해설

$$\begin{split} & \stackrel{\triangle ABC}{\overline{AM}} \stackrel{\text{off}}{\overline{BM}} = \overline{CM} = 5(cm) \text{ , } \\ & \overline{AH^2} = \overline{BH} \cdot \overline{CH} = 16 \end{split}$$

 $\overline{\rm AH}=4$

 $A\Pi = 4$ $\triangle AHM = \frac{1}{2} \times \overline{AH} \times \overline{HM} = \frac{1}{2} \times \overline{AM} \times \overline{HI}$ $4 \times 3 = 5 \times \overline{HI}$ $\therefore \overline{HI} = \frac{12}{5} \text{(cm)}$

62. 다음 그림과 같은 직각삼각형 ABC 에서 x+y 의 값을 구하면?

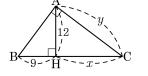

- ① $\frac{68}{3}$ ② $\frac{70}{3}$ ③ 24 ④ $\frac{74}{3}$ ⑤ 25

해설
$$\overline{AH}^2 = \overline{BH} \times \overline{HC} \text{ 이므로 } 8^2 = 6x, \therefore x = \frac{32}{3}$$
 그리고 $y \times 10 = 8 \times \frac{50}{3}, \therefore y = \frac{40}{3}$

그러고
$$y \times 10 = 8 \times \frac{1}{3}$$
, $\therefore y = \frac{1}{3}$

따라서
$$x + y = \frac{32}{3} + \frac{40}{3} = 24$$

63. 다음 그림에서 x 의 값을 구하면?


① 6 ② 5 ③ 4.8 ④ 4.5 ⑤ 4

 $\overline{\rm AB}^2 = \!\! \overline{\rm BD} \! \times \! \overline{\rm BC}$

16 = 2(2+x)

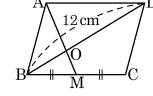
2x = 12, x = 6

 $\mathbf{64}$. 다음 직각삼각형에서 x, y 의 값을 차례대로 구하여라.

▶ 답: ▶ 답:

▷ 정답: x = 16 ▷ 정답: y = 20

 $\overline{AH}^2 = \overline{BH} \times \overline{CH}$


해설

144 = 9x $\frac{\therefore x = 16}{\overline{AC}^2 = \overline{CH} \times \overline{CB}}$

 $y^2 = 16 \times 25 = 400$ ∴ y>0 이므로 y = 20

65. 다음 그림과 같은 평행사변형 ABCD에서 점 M은 \overline{BC} 의 중점이다. $\overline{BD}=12\mathrm{cm}$ 일 때, \overline{BO} 의 길이를 구하면?

.

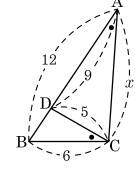
① 3cm

②4cm

③ 5cm

④ 6cm

⑤ 7cm


 $\overline{\mathrm{AD}}\,/\!/\,\overline{\mathrm{BC}}$ 이므로 $\angle\mathrm{OAD}=\angle\mathrm{OMB}$ (엇각), $\angle\mathrm{ODA}=\angle\mathrm{OBM}$ (엇

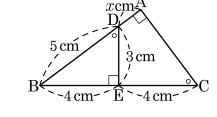
해설

각) 따라서 △OAD ♡ △OMB 이다. AD: BM = 2:1 이므로 DO: BO = 2:1이다.

 $\overline{BD} = 3\overline{BO} = 12$ $\therefore \overline{BO} = 4(\text{cm})$

66. 다음 그림에서 x의 값을 구하여라.

➢ 정답: 10


해설

답:

 $\triangle ABC$ 와 $\triangle CBD$ 에서 $\angle B$ 는 공통, $\angle A=\angle BCD$ 이므로 $\triangle ABC$

♡△CBD (AA 닮음)이다. $\overline{AB} : \overline{CB} = \overline{AC} : \overline{CD}$ 12:6=x:5이므로 x=10이다.

67. 다음 그림에서 $\angle BED = \angle DAC = 90$ °이고, $\angle BDE = \angle ACB$ 일 때, x의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $rac{7}{5}$

∠BED = ∠DAC = 90°이코, ∠BDE = ∠ACB 이므로

해설

 $\triangle BED$ $\hookrightarrow \triangle BAC(AA닮음)$ 이다. $\overline{\mathrm{BE}}:\overline{\mathrm{BA}}=\overline{\mathrm{BD}}:\overline{\overline{\mathrm{BC}}}$ 4:(5+x)=5:(4+4) 이므로 5(5+x)=32, 5x=7 이다.

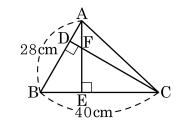
따라서 $x = \frac{7}{5}$ 이다.

68. 다음 그림에서 $\angle ACD = \angle ABC$, $\overline{AB} = 9 cm$, $\overline{AC} = 6 cm$ 일 때, \overline{AD} 의 길이는?

> $9 \operatorname{cm} \mathbf{\hat{D}}$ \6 cm

① 2.5cm **4**4cm

② 3cm


3.2cm

⑤ 5cm

 $\angle A$ 는 공통, $\angle ACD = \angle ABC$ 이므로 $\triangle ABC$ $\bigcirc \triangle ACD$ (AA 닮

음)이다 $\overline{AB}:\overline{AC}=\overline{AC}:\overline{AD}$ $9:6=6:\overline{\mathrm{AD}}$, $9\overline{\mathrm{AD}}=36$ 이므로 $\overline{\mathrm{AD}}=4(\mathrm{cm})$ 이다.

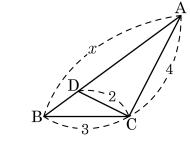
69. 다음 그림에서 $\overline{AD}:\overline{DB}=2:5$ 일 때, \overline{EC} 의 길이는 ?

 $3 \ 27 cm$

 $\triangle ABE \hookrightarrow \triangle CBD (AA 닮음)$ $\overline{AB} : \overline{CB} = \overline{BE} : \overline{BD}$

② 26cm

 $\overline{\mathrm{BD}} = 28 \times \frac{5}{7} = 20(\mathrm{cm})$


 $28:40 = \overline{BE}:20$

 $\overline{BE} = 14(cm)$ $\therefore \overline{EC} = 40 - 14 = 26(cm)$

① 25cm

해설

70. 다음 그림에서 $\angle A = \angle BCD$ 일 때, x의 값은?

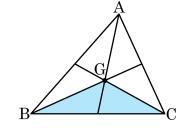
① 5 ② 5.5 ③ 5.8

⑤ 6.5

해설 $\triangle ABC$ 와 $\triangle CBD$ 에서 $\angle B$ 는 공통, $\angle A=\angle BCD$ 이므로 $\triangle ABC$

♡△CBD (AA 닮음)이다. $\overline{\mathrm{AB}}:\overline{\mathrm{CB}}=\overline{\mathrm{AC}}:\overline{\mathrm{CD}}$ x:3=4:2이므로 x=6이다.

- 71. 다음 주어진 조건으로 $\triangle ABC \hookrightarrow \triangle DEF$ 인 경우를 모두 고르면?(정답 2개)
 - ② \overline{AB} : $\overline{DE} = \overline{BC}$: \overline{EF} , $\angle A = \angle D$


 - $\ \overline{AB} = 2\overline{DE}, \ \overline{BC} = 2\overline{EF}, \ \angle ABC = 2\angle DEF$
 - \bigcirc $\angle A = \angle D, \angle B = \angle E$

① 대응하는 세 변의 길이의 비가 같으므로 SSS 닮음,

해설

- ⑤ 대응하는 두 각의 크기가 같으므로 AA 닮음

72. 다음 그림에서 점 G는 \triangle ABC의 무게중심이다. \triangle ABC의 넓이가 $27\mathrm{cm}^2$ 일 때, \triangle BGC 의 넓이는?

① 5cm^2 ② 6cm^2 ③ 7cm^2 ④ 8cm^2 ⑤ 9cm^2

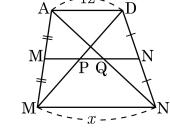
 $\Delta BGC = \frac{1}{3} \Delta ABC = \frac{1}{3} \times 27 = 9(cm^2)$

73. 다음 그림에서 \overline{AM} 은 $\triangle ABC$ 의 중선이고, 점 G, G'는 각각 $\triangle ABC$ 와 $\triangle GBC$ 의 무게 중심이다. $\overline{AG}=18~\mathrm{cm}$ 일 때, $\overline{GG'}$ 의 길이는?

① 4 cm

① 4 cm ② 4.5 cm ③ 6 c
④ 7 cm ⑤ 7.5 cm

 $\overline{AG} : \overline{GM} = 2 : 1 = 18 : \overline{GM}$ $\therefore \overline{GM} = 9(\text{cm}),$ $\overline{GG'} = 9 \times \frac{2}{3} = 6(\text{cm})$


- 74. 다음 그림에서 점 G 와 점 G' 은 각각 \triangle ABC 와 \triangle GBC 의 무게중심이다. $\overline{\mathrm{GG'}}=4\,\mathrm{cm}$ 일 때, $\overline{\mathrm{AD}}$ 의 길이는?
 - \bigcirc 12 cm $216\,\mathrm{cm}$
 - ④ 24 cm \bigcirc 28 cm
- ③18 cm

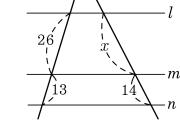
$$\overline{GG'} = \frac{2}{3}\overline{GD} = \frac{2}{3} \times \frac{1}{3} \times \overline{AD} ,$$

$$4 = \frac{2}{3} \times \frac{1}{3} \times \overline{AD}$$

$$4 = \frac{2}{3} \times \frac{1}{3} \times \overline{AD}$$
$$\therefore \overline{AD} = 18(\text{cm})$$

75. 다음 그림의 사다리꼴 ABCD에서 점 M, N은 각각 \overline{AB} , \overline{CD} 의 중점이다. $\overline{AD}=12$, $\overline{MP}:\overline{PQ}=3:2$ 일 때, x값을 구하여라.

답:


▷ 정답: 20

 $\overline{\mathrm{AM}} = \overline{\mathrm{MB}}, \, \overline{\mathrm{DN}} = \overline{\mathrm{NC}}$ 이므로 $\overline{\mathrm{AD}} \, / \! / \, \overline{\mathrm{MN}} \, / \! / \, \overline{\mathrm{BC}},$

 $\triangle ABD$ 에서 $\overline{MP} = \frac{1}{2}\overline{AD} = 6$ $\overline{MP} : \overline{PQ} = 3 : 2 \circ \Box \Box \overline{E} \ \overline{PQ} = \frac{2}{3}\overline{MP} = \frac{2}{3} \times 6 = 4$ 따라서 $x = \overline{BC} = 2\overline{MQ} = 2 \left(\overline{MP} + \overline{PQ}\right)$ $= 2 \times (6 + 4) = 20 \circ \Box \overline{F}.$

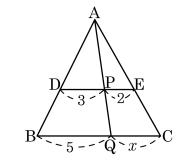
 $= 2 \times (6+4) = 20$ 이다.

76. 다음 그림과 같이 두 직선이 평행인 세 직선 l, m, n 과 만날 때, x 의 값은?

① 27

228

③ 32


4 36

⑤ 39

해설 $l /\!\!/ m /\!\!/ n$ 이므로 x: 14 = 26: 13

 $\therefore x = 28$

77. 다음 그림에서 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 일 때, x 의 값은?

① $\frac{10}{7}$ ② $\frac{5}{3}$ ③ 2 ④ $\frac{5}{2}$

 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 이므로 $\triangle\mathrm{ADP} \odot \triangle\mathrm{ABQ}$

 $3 : 5 = \overline{AP} : \overline{AQ} \cdots \bigcirc$

 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 이므로 $\triangle\mathrm{APE} \odot \triangle\mathrm{AQC}$

 $\overline{AP}: \overline{AQ} = 2 : x \cdots \bigcirc$ \bigcirc , 으에서 3:5=2:x

3x = 10

 $\therefore \ x = \frac{10}{3}$

78. 다음 그림의 $\triangle ABC$ 에서 \overline{DE} $/\!/\!\!/ \overline{BC}$ 이다. $\overline{AB}=12\mathrm{cm},$ $\overline{AC}=9\mathrm{cm},$ $\overline{\mathrm{AE}}=6\mathrm{cm}$ 일 때, x 값은?

① 5 ② 6

3 7

⑤ 9

 $\triangle ADE$ \circ $\triangle ABC$ 이므로 $\overline{AD}: \overline{AB} = \overline{AE}: \overline{AC}$

x:12=6:9 $9x = 72 \qquad \therefore \ x = 8$

79. 다음 그림에서 $\triangle ABC$ 와 $\triangle DEF$ 는 닮은 도형이다. x, y 의 값을 구하 여라.

답: 답:

▷ 정답: ∠x = 30° ▷ 정답: y = 24

해설

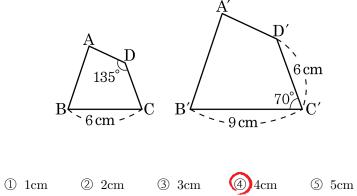
 $\angle {\rm E} = \angle {\rm B} = 30^{\circ} \; , \, \angle x = 30^{\circ}$ $\overline{\mathrm{AC}}:\overline{\mathrm{DF}}=\overline{\mathrm{BA}}:\overline{\mathrm{ED}}$

9:12=18:yy = 24

80. 다음 중 옳지 <u>않은</u> 것을 모두 골라라.

- ⊙ 닮음인 두 입체도형에서 대응하는 면은 서로 닮은 도형이다. € 넓이가 같은 두 평면도형은 서로 닮음이다.
- ⓒ 닮은 두 평면도형에서 대응하는 각의 크기는 서로 같다. ② 닮음인 두 입체도형에서 대응하는 모서리의 길이의
- 비는 닮음비와 같다. ◎ 닮은 두 평면도형에서 대응하는 변의 길이의 비는
- 일정하지 않다.

▶ 답:


답:

▷ 정답: □

▷ 정답: □

© 넓이가 같다고 해서 서로 닮음이 아니다. ◎ 닮은 두 평면도형에서 대응변의 길이의 비는 일정하다.

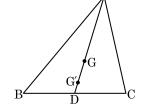
81. 다음 그림에서 $\Box ABCD \bigcirc \Box A'B'C'D'$ 일 때, \overline{CD} 의 길이는?

두 닮은 평면도형에서 대응하는 변의 길이의 비는 일정하므로 6:9=x:6 $\therefore x=\frac{36}{9}=4$

$$\therefore x = \frac{30}{9}$$

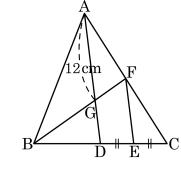
82. 다음 중 항상 닮음 관계에 있지 <u>않은</u> 것을 모두 고르면?

해설


- ① 두구 ② 두 정육면체 ③ 두 원기둥

④ 두 원뿔대 ⑤ 두 정사면체

원기둥과 원뿔대는 항상 닮은 도형인 것은 아니다.


83. 다음 그림에서 점 G 는 $\triangle ABC$ 의 무게중 심이고, 점 G' 는 \triangle GBC 의 무게중심이다. $\overline{\mathrm{AD}} = 9\,\mathrm{cm}$ 일 때, $\overline{\mathrm{GG'}}$ 의 길이는?

- \bigcirc 1 cm 4 cm
- ② 2 cm 3 cm
 - \bigcirc 5 cm

 $\overline{\mathrm{GD}} = 9 \times \frac{1}{3} = 3(\,\mathrm{cm}) \;,$ $\overline{\mathrm{GG'}} = 3 \times \frac{2}{3} = 2(\,\mathrm{cm})$

84. 다음 그림과 같은 $\triangle ABC$ 에서 점 G는 $\triangle ABC$ 의 무게중심이고 점 E 는 \overline{DC} 의 중점이다. $\overline{AG}=12\mathrm{cm}$ 일 때, \overline{FE} 의 길이는?

(5)9cm

4 8cm

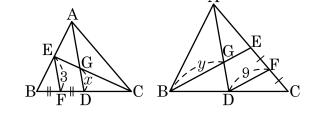
 \Im 7cm

점 G는 $\triangle ABC$ 의 무게중심이므로 $\overline{AD}:\overline{AG}=3:2$ $\overline{AD}:12=3:2$ 이므로

 \bigcirc 6cm

 $2\overline{AD} = 36$ $\therefore \overline{AD} = 18 \text{ (cm)}$

 $\overline{\mathrm{AF}} = \overline{\mathrm{FC}}$, $\overline{\mathrm{DE}} = \overline{\mathrm{EC}}$ 이므로 $\overline{\mathrm{EF}} = \frac{1}{2}$ $\overline{\mathrm{AD}} = \frac{1}{2} \times 18 = 9 \, \mathrm{(cm)}$


① 5cm

- 85. 다음 그림에서 점 G 가 직각삼각형 ABC의 무게중심일 때, $\overline{\mathrm{AG}}$ 의 길이는?
 - ① $\frac{5}{3}$ cm ② $\frac{7}{3}$ cm ③ $\frac{10}{3}$ cm ④ 2 cm ⑤ 3 cm

직각삼각형의 빗변의 중점은 외심이므로 $\overline{AD}=\overline{BD}=\overline{DC}$ $\overline{AD}=\frac{1}{2}\overline{BC}=5(\,\mathrm{cm})$, $\overline{AG}=\frac{2}{3}\times 5=\frac{10}{3}(\,\mathrm{cm})$

$$\overline{AG} = \frac{2}{2} \times 5 = \frac{10}{2}$$
 (c

86. 다음 그림의 $\triangle ABC$ 에서 점 G는 $\triangle ABC$ 의 무게중심일 때, y-x를 구하여라.

▶ 답: ▷ 정답: 10

왼쪽 삼각형에서

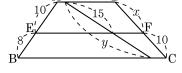
해설

 $\overline{\mathrm{BF}} = \overline{\mathrm{FD}}, \ \overline{\mathrm{AE}} = \overline{\mathrm{EB}}$ 이므로 $\overline{AD} = 2\overline{EF} = 6$

점 G가 무게중심이므로 $x = 6 \times \frac{1}{3} = 2$

오른쪽 삼각형에서 $\overline{AG}:\overline{GD}=2:1$ 이므로 $\overline{AG}:\overline{AD}=2:3$

 $2:3=\overline{\mathrm{EG}}:9$


 $\overline{\mathrm{EG}}=6$

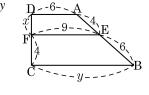
2:1=y:6

 $\therefore y = 12$

따라서 y - x = 12 - 2 = 10이다.

87. 다음 그림에서 \overline{AD} // \overline{EF} // \overline{BC} 이다. y-x의 값을 구하여라.

답:▷ 정답: 14.5


10:8=x:10

해설

8x = 100, x = 12.518: 10 = y: 15

10y = 270, y = 27 $\therefore y - x = 27 - 12.5 = 14.5$

·

①
$$x = \frac{7}{3}, y = 11$$

①
$$x = \frac{7}{3}, y = 11.5$$
 ② $x = \frac{7}{3}, y = 12.5$ ③ $x = \frac{7}{3}, y = 13.5$ ④ $x = \frac{8}{3}, y = 12.5$ ⑤ $x = \frac{8}{3}, y = 13.5$

$$4) x = \frac{1}{3}, y = 12.5$$

$$(5)x = \frac{1}{3}, y = 13$$

$$4: 6 = x: 4, 6x = 16$$
∴ $x = \frac{8}{3}$

$$x = \frac{1}{3}$$

$$\therefore x = \frac{8}{3}$$

$$4: 10 = (9-6): (y-6)$$

$$4y - 24 = 30, 4y = 54$$

$$\therefore y = \frac{27}{2} = 13.5$$

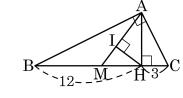
$$\therefore y = \frac{13.5}{2}$$

89. 다음 그림의 $\triangle ABC$ 에서 점 M은 \overline{BC} 의 중점이다. $\overline{AG} \bot \overline{BC}$, $\overline{GH} \bot \overline{AM}$, $\overline{BC} = 25 \mathrm{cm}$, $\overline{GC} = 5 \mathrm{cm}$ 일 때, \overline{AH} 의 길이를 구하면?

① 4

③ 12

④ 14


⑤ 16

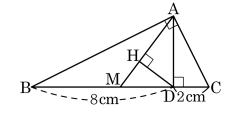
 $\triangle ABC$ 에서 $\overline{AG}^2 = \overline{CG} \times \overline{BG}$ 이므로 $\overline{AG}^2 = 20 \times 5$ $\therefore \overline{AG} = 10$ $\triangle AMG$ 에서 $\overline{AG}^2 = \overline{AH} imes \overline{AM}$ 이고 $\overline{AM} = \frac{25}{2} = 12.5$ 이므로

 $10^2 = \overline{\rm AH} \times 12.5$

 $\therefore \overline{\mathrm{AH}} = 8$

90. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC에서 점 M이 \overline{BC} 의 중점이고, \overline{AH} $\bot\overline{BC}$, \overline{AM} $\bot\overline{HI}$ 일 때, \overline{AI} 의 길이를 구하면?

① $\frac{21}{5}$ ② $\frac{22}{5}$ ③ $\frac{23}{5}$ ④ $\frac{24}{5}$ ⑤ 5


점 M 은 직각삼각형의 외심이므로 $\overline{\mathrm{AM}} = \frac{15}{2}$ $\triangle ABH$ $\hookrightarrow \triangle CAH$ 이므로 $\overline{AH}^2=12\times 3$

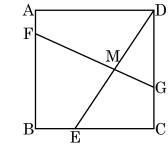
 $\triangle AIH$ $\hookrightarrow \triangle AHM$ 이므로 $6^2 = \overline{AI} \cdot \overline{AM}$

 $6^2 = \overline{\mathrm{AI}} \times \frac{15}{2}$

 $\therefore \overline{AI} = \frac{24}{5}$

91. 다음 그림의 $\angle A=90^\circ$ 인 $\triangle ABC$ 에서 $\overline{BM}=\overline{CM}$, $\overline{AD}\bot\overline{BC}$, $\overline{DH}\bot\overline{AM}$ 이다. $\overline{BD}=8\mathrm{cm}$, $\overline{CD}=2\mathrm{cm}$ 일 때, \overline{DH} 의 길이를 구 하면?

④ 9cm

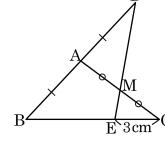

② 8cm ③ $\frac{19}{5}$ cm

 $3\frac{17}{5}$ cm

i) $\overline{AD}^2 = \overline{BD} \times \overline{DC} = 8 \times 2 = 16$ ∴ $\overline{AD} = 4(\text{cm}) \ (\because \overline{AD} > 0)$ 점 M은 ΔABC의 외심이다. $\overline{\rm BM} = \overline{\rm CM} = \overline{\rm AM} = 5 {\rm cm}$ $\overline{\text{MD}} = 5 - 2 = 3$ ii) $\overline{\text{MD}} \times \overline{\text{AD}} = \overline{\text{AM}} \times \overline{\text{DH}}$ 이므로

 $3 \times 4 = 5 \times \overline{DH}$ $\therefore \overline{DH} = \frac{12}{5} \text{cm}$

92. 다음 그림과 같이 한 변의 길이가 12 인 정사각형 ABCD 에서 $\overline{\rm DM}=\overline{\rm EM}$ 이고, $\overline{\rm CE}=8$, 선분 GM 이 5 일 때, 선분 FM 의 길이를 구하 여라.


답:▷ 정답: 10

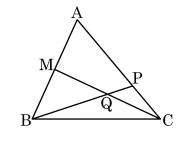
7 01 .

93. 다음 그림과 같은 $\triangle ABC$ 에서 \overline{BA} 의 연장선 위에 $\overline{BA} = \overline{AD}$ 인 점 D 를 정하고, \overline{AC} 의 중점을 M, 점 D와 M을 지나 \overline{BC} 와 만나는 점을 E라 한다. $\overline{EC} = 3cm$ 일 때, \overline{BE} 의 길이를 구하여라.

D

 $\underline{\mathrm{cm}}$

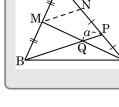
▷ 정답: 6<u>cm</u>

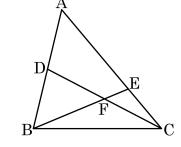

▶ 답:

점 A에서 \overline{BC} 와 평행한 직선을 그어 \overline{DE} 와 만나는 점을 G 라

 $\triangle MAG \equiv \triangle MCE(ASA 합동)$ $\overline{AG} = \overline{EC} = 3(cm)$

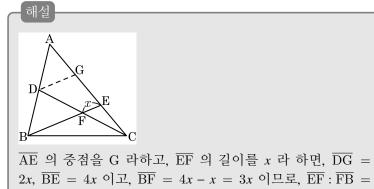
 $\therefore \overline{BE} = 2\overline{EC} = 2 \times 3 = 6(cm)$

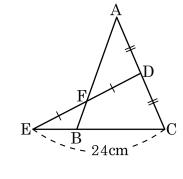

94. 다음 그림에서 점 M 은 \overline{AB} 의 중점이고 $\overline{AP}:\overline{PC}=2:1$ 일 때, $\overline{PQ}:\overline{PB}$ 는?


① 1:3 ② 1:4 ③ 2:3 ④ 2:5 ⑤ 3:5

| AP 의 중점을 N 이라하고 PQ = a 하면, MN = 2a 이고, BP = 4a 이므로, PQ : PB = a : 4a = 1 : 4 이다.

A


95. 다음 그림에서 점 D 가 \overline{AB} 의 중점이고 $\overline{AE}=2\times\overline{EC}$ 일 때, $\overline{EF}:\overline{FB}$ 의 비가 a:b 이다. a+b 의 값을 구하시오. (단 a,b는 서로소)


▷ 정답: 4

00.

▶ 답:

x:3x = 1:3이다. 따라서 a+b=4이다. 96. 다음 그림에서 $\overline{AD}=\overline{DC},\overline{EF}=\overline{FD}$ 일 때, \overline{EB} 의 길이를 바르게 구한 것은?

3 8 cm 4 9 cm

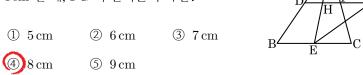
 \bigcirc 10 cm

다음 그림과 같이 $\overline{\mathrm{GD}}\,/\!/\,\overline{\mathrm{EC}}$ 가 되도록 점 G 를 잡으면

 $\Delta \mathrm{GFD} = \Delta \mathrm{BFE}(\mathrm{ASA합동})$ 이므로 $\overline{\mathrm{EB}} = \overline{\mathrm{DG}} \cdots \bigcirc$ 또, $\Delta \mathrm{ABC}$

 \bigcirc 6 cm

 \bigcirc 7 cm


에서 $\overline{\mathrm{DG}} = \frac{1}{2}\overline{\mathrm{BC}}\cdots$ ①,ⓒ에서 $\overline{\mathrm{EB}}=\frac{1}{2}\overline{\mathrm{BC}}$ 이므로 $\overline{\mathrm{BC}}=2\overline{\mathrm{EB}}$

따라서 $\overline{EC} = \overline{EB} + \overline{BC} = \overline{EB} + 2\overline{EB} = 3\overline{EB} = 24$

 $\therefore \overline{\mathrm{EB}} = 8 (\,\mathrm{cm})$

- 97. 다음 그림의 $\triangle ABC$ 에서 세 점 D, E, F는 ΔABC 의 각 변의 중점이다. $\overline{\mathrm{DF}}=\overline{\mathrm{FG}},\,\overline{\mathrm{HF}}=$ $4\,\mathrm{cm}$ 일 때, $\overline{\mathrm{FG}}$ 의 길이를 구하면?

해설

 $\overline{\mathrm{FG}} = \overline{\mathrm{DF}} = 2\overline{\mathrm{HF}} = 8(\,\mathrm{cm})$