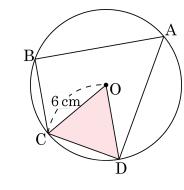
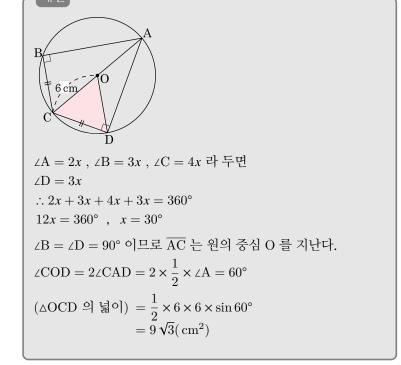

다음 그림에서 ∠P = 25°, ∠BED = 70°일 때, ∠ABC 의 크기를 1. 구하여라.



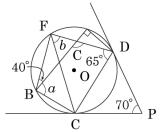
▷ 정답: 22.5_°

▶ 답:

2. 다음 그림의 $\square ABCD$ 에서 $\angle B=\angle D$, $\overline{BC}=\overline{CD}$, $\angle A:\angle B:\angle C=2:3:4$ 이고 원 O 의 반지름의 길이가 $6\,\mathrm{cm}$ 일 때, $\triangle OCD$ 의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$


▷ 정답: 9√3 cm²

▶ 답:

3. 다음 그림에서 두 반직선은 원 🔿 의 접선이다. $\angle BAD = 90^{\circ}, \angle EDC =$ 65°, \angle EBF = 40°, \angle CPD = 70° 일 때, $\angle a + \angle b + \angle c$ 의 크기는?

 $\widetilde{\mathrm{C}}_{65}$

•0

① 240° ② 245°

 3255°

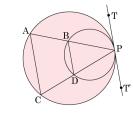
4 260°

 $\ \ \ \ \ 320\,^{\circ}$

70°\(\) P

해설 1)사각형 EBCD 가 원에 내접하

므로 $\angle a + 40^{\circ} + 65^{\circ} = 180^{\circ}$: $\angle a = 75\,^{\circ}$ 2) 접선과 현이 이루는 각의 크기


는 그 내부의 호에 대한 원주각의 크기와 같으므로

 $\angle b = \angle PDC = \angle PCD = 55^{\circ}$ (:: $\overline{\mathrm{PD}} = \overline{\mathrm{PC}})$

3) $\triangle {
m ADE}$ 에서 $\angle c = 90\,^\circ + 40\,^\circ = 130\,^\circ$ (이 때, $\widehat{
m AF}$ 에 대한 원주각으로 ∠FBA = ∠ADF = 40°)

따라서, $\angle a + \angle b + \angle c = 75^{\circ} + 55^{\circ} + 130^{\circ} = 260^{\circ}$ 이다.

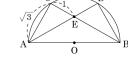
4. 다음 그림에서 점 P 는 두 원의 접점이고 직선 TT' 는 점 P 를 지나는 접선이다. 다음 중 옳지 않은 것은?

③ ∠BPT = ∠BDP

① $\angle PDB = \angle PCA$

- ② $\angle BPT = \angle ACP$ ④ $\overline{AC}//\overline{BD}$
- $\overline{\bigcirc}\overline{BD}:\overline{AC}=\overline{AB}:\overline{BP}$
- . .

⑤ $\triangle APC \sim \triangle BPD$ 이므로 $\overline{BD} : \overline{AC} = \overline{PB} : \overline{PA}$


해설

5. 세호네 반 학생 30 명의 몸무게의 총합은 2100 , 몸무게의 제곱의 총합은 150000 일 때, 세호네 반 학생 몸무게의 표준편차를 구하여라.

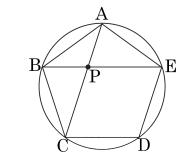
▶ 답:

➢ 정답: 10

다음 그림과 같이 지름이 \overline{AB} 인 반원에서 점 $C,\ D$ 는 원주 위의 **6.** 점이고, $\angle BAD = \angle CAD$ 이다. \overline{AD} 와 \overline{BC} 의 교점을 E 라 하고, $\overline{AC} = \sqrt{3}, \ \overline{CE} = 1$ 일 때, \overline{AB} 의 길이를 구하여라.

▶ 답: ightharpoonup 정답: $2\sqrt{3}$

 $\triangle ACE$ 에서 $\overline{AC}=\sqrt{3},\ \overline{CE}=1$ 이고,


∠ECA = 90° 이므로 $\overline{\mathrm{AE}} = 2$, $\angle \mathrm{CAE} = \angle \mathrm{BAE} = 30^{\circ}$

또, △ABE 에서

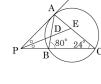
 $\overline{AE} = \overline{BE} = 2$, $\overline{DE} = 1$, $\overline{BD} = \sqrt{3}$

 $\therefore \overline{AB} = \sqrt{\overline{AD}^2 + \overline{BD}^2} = \sqrt{3^2 + \sqrt{3}^2} = 2\sqrt{3}$

7. θ O 에 내접하는 정오각형 ABCDE 에서 대각선 AC 와 BE 의 교점을 P 라 할 때, $\frac{\overline{CP}}{\overline{AP}}$ 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{1+\sqrt{5}}{2}$


 $\angle BAC = \angle BCA = \angle ABE = \frac{1}{5} \times 180 = 36^{\circ}$ ∴ △ABC ∽ △APB

또 $\angle CPB = \angle CBE = 72^{\circ}$ 이므로 $\overline{BC} = \overline{CP}$, $\overline{AP} = 1$, $\overline{CP} = x$ 라 하면 x:(1+x)=1:x

 $x = \frac{1 + \sqrt{5}}{2}$

 $\therefore \ \frac{\overline{CP}}{\overline{AP}} = \frac{1+\sqrt{5}}{2}$

8. 다음 그림에서 \overrightarrow{PA} 는 원의 접선이고 $\angle APD = \angle BPD$ 이다. $\angle ACB =$ 24°, ∠ABC = 80° 일 때, ∠ADE 의 크기를 구하여라. (단, 점 A 는 접점이다.)

▶ 답: ▷ 정답: 52 °

접선과 현이 이루는 성질에 의하여

 $\angle PAB = \angle ACB = 24^{\circ}$ $\triangle APB$ 에서 $\angle PAB + \angle APB = \angle ABC$ 이므로

 $24^{\circ} + \angle APB = 80^{\circ}$ $\angle APB = 56^{\circ}$

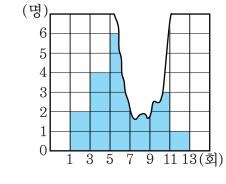
 $\therefore \ \angle APD = \angle BPD = \frac{1}{2} \times 56^{\circ} = 28^{\circ}$

 $\triangle APD$ 에서 $\angle ADE = \angle APD + \angle PAB$ 이므로 $\therefore \angle ADE = 28^{\circ} + 24^{\circ} = 52^{\circ}$

9. 세 실수 a, b, c 가 $a^2 + b^2 + c^2 = 24$, a + b, b + c, c + a 의 평균이 4 일 때, ab, bc, ca 의 평균을 구하여라.

 ■ 답:

 □ 정답:
 2


00.

a+b, b+c, c+a의 평균이 4 이므로 $\frac{2(a+b+c)}{3} = 4, \ a+b+c=6$ $(a+b+c)^2 = a^2+b^2+c^2+2(ab+bc+ca)$ 에서 $a^2+b^2+c^2 = (a+b+c)^2-2(ab+bc+ca)$ $24 = 6^2-2(ab+bc+ca)$ $\therefore ab+bc+ca=6$ 따라서 ab, bc, ca의 평균은 $\frac{ab+bc+ca}{3} = \frac{6}{3} = 2$ 이다.

① 14 ② 16 ③ 18 ④ 20 ⑤ 22

세 수 x, y, z 의 평균이 4 이므로 $\frac{x+y+z}{3} = 4$ $\therefore x + y + z = 12 \quad \cdots \quad \bigcirc$ 또한, x, y, z 의 분산이 2 이므로 $\frac{(x-4)^2 + (y-4)^2 + (z-4)^2}{3} = 2$ $(x-4)^2 + (y-4)^2 + (z-4)^2 = 6$ $x^2 - 8x + 16 + y^2 - 8y + 16 + z^2 - 8z + 16 = 6$ $x^2 + y^2 + z^2 - 8(x + y + z) + 48 = 6$ 위의 식에 ①을 대입하면 $x^2 + y^2 + z^2 - 8 \times 12 + 48 = 6$ $\therefore x^2 + y^2 + z^2 = 54$ 한편, 3x, 3y, 3z 의 평균은 $\frac{3x + 3y + 3z}{3} = \frac{3(x + y + z)}{3} = \frac{3 \times 12}{3} = 12$ 따라서 분산은 $\frac{(3x-12)^2 + (3y-12)^2 + (3z-12)^2}{3}$ $= \frac{9x^2 + 9y^2 + 9z^2 - 72(x+y+z) + 144 \times 3}{3}$ $= \frac{9 \times 54 - 72 \times 12 + 432}{3} = \frac{54}{3}$ =18

11. 다음 그림은 어느 학급 학생 20 명의 턱걸이 횟수를 조사하여 나타낸 히스토그램의 일부이다. 이 자료의 분산을 구하여라. (단, 평균은 소수 첫째 자리에서 반올림한다.)

▷ 정답: 7.4

▶ 답:

계급값 8 에 대한 도수를 x 라고 하면 도수의 합은 20 명이므로

20 - (2 + 4 + 6 + 3 + 1) = 4 : x = 4이때, 주어진 자료의 평균은 $2 \times 2 + 4 \times 4 + 6 \times 6 + 8 \times 4 + 10 \times 3 + 12 \times 1$

= $\frac{4+16+36+32+30+12}{20}$ = 6.5(회) 이므로 반올림하면

7(회) 이다. 따라서 구하는 분산은 $\frac{1}{20} \left\{ (2-7)^2 \times 2 + (4-7)^2 \times 4 + (6-7)^2 \times 6 + (8-7)^2 \times 4 + (10-7)^2 \times 3 + (12-7)^2 \times 1 \right\}$

 $= \frac{1}{20}(50 + 36 + 6 + 4 + 27 + 25) = 7.4$

이다.