
1. 다음 직각삼각형에서 $\sin A - \cos A$ 의 값

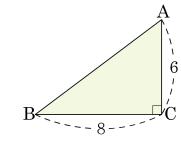
 $\overline{AB} = \sqrt{6^2 + 8^2} = 10$

$$\sin \Lambda = \frac{\overline{BC}}{\overline{BC}} = \frac{8}{8}$$

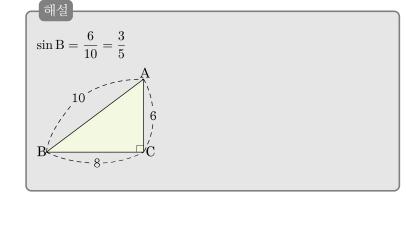
$$\sin A = \frac{\overline{BC}}{\overline{AB}} = \frac{8}{10} = \frac{4}{5} , \cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{6}{10} = \frac{3}{5}$$

따라서 $\sin A - \cos A = \frac{4}{5} - \frac{3}{5} = \frac{1}{5}$ 이다.

 $\cos A = \frac{1}{3}$ 인 직각삼각형 ABC 에서 $\sin A \times \tan A$ 의 값을 구하여라. (단, $0^\circ < A < 90^\circ$


ightharpoons 정답: $rac{8}{3}$

 $\cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{1}{3}$ 이므로 $\overline{AC} = \overline{AB} \times \cos A = 9 \times \frac{1}{3} = 3$ 이다.


AB 3 되다고라스 정리에 의해 $\overline{BC} = \sqrt{9^2 - 3^2} = \sqrt{72} = 6\sqrt{2}$ 이다. $\Rightarrow \sin A = \frac{6\sqrt{2}}{9} = \frac{2\sqrt{2}}{3}, \tan A = \frac{\sin A}{\cos A} = \frac{\frac{2\sqrt{2}}{3}}{\frac{1}{3}} = 2\sqrt{2}$ 이다.

따라서 $\sin A \times \tan A = \frac{2\sqrt{2}}{3} \times 2\sqrt{2} = \frac{8}{3}$ 이다.

3. $\angle C=90^\circ$ 인 $\triangle ABC$ 에서 $\tan B=rac{6}{8}$ 일 때, $\sin B$ 의 값은?

- ① $\frac{3}{4}$ ② $\frac{4}{2}$ ③ $\frac{3}{5}$ ④ $\frac{4}{5}$ ⑤ $\frac{5}{4}$

4. 다음 삼각비의 값 중 가장 작은 값은?

 $\textcircled{4} \tan 45^{\circ}$ $\textcircled{5} \tan 60^{\circ}$ 해설

① sin 25° 와 ③ cos 10° $0^{\circ} \le x < 45^{\circ}$ 일 때, $\sin x < \cos x$

따라서 $\sin 25$ ° < $\cos 10$ ° < 1 $2 \cos 0 = 1$

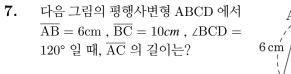
 $4 \tan 45 \circ = 1$

따라서 가장 작은 값은 ① $\sin 25\,^\circ$

- $45^{\circ} < x < 90^{\circ}$ 일 때, $\sqrt{(1 \tan x)^2}$ 의 값은? **5**.
 - ① $1 \tan x$ $2 \tan x + 1$
 - ⑤ 0

4 1

해설

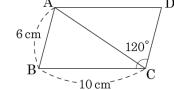

따라서 $1 - \tan x < 0$ 이고, $\sqrt{(1 - \tan x)^2} = -(1 - \tan x) = -1 + \tan x$ 이다.

 $45^{\circ} < x < 90^{\circ}$ 일 때, $\tan 45^{\circ} < \tan x$ 이므로 $\tan x > 1$ 이다.

- 다음 그림과 같이 바다를 항해하는 배와 6. 등대 사이의 거리가 21 m 이고, 배에서 등대의 꼭대기를 바라 본 각의 크기가 15°이었다면, 등대의 높이는?

 - ① $\tan 15\,^{\circ}\,\mathrm{m}$ $4 21 \sin 15$ ° m
- ② 21 tan 15 ° m ③ sin 15 ° m $\Im \cos 15^{\circ} \mathrm{m}$

 $\tan 15$ ° = $\frac{x}{21}$ 이므로 $x = 21 \tan 15$ ° m 이다.

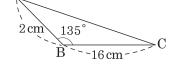


① $\sqrt{67}$ ② $\sqrt{71}$

 $\boxed{3}2\sqrt{19}$

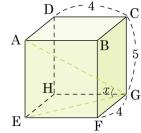
④ $\sqrt{86}$

⑤ $\sqrt{95}$


점 A 에서 \overline{BC} 에 내린 수선의 발을 H 라 할 때

 $\overline{AH} = 6 \times \sin 60^{\circ} = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$

 $\overline{BH} = 6 \times \cos 60^{\circ} = 6 \times \frac{1}{2} = 3$: $\overline{CH} = 10 - 3 = 7$ $\overline{AC}^2 = \overline{AH}^2 + \overline{CH}^2$ 에서 $\overline{AC} = \sqrt{27 + 49} = \sqrt{76} = 2\sqrt{19}$ 이다.


다음 삼각형의 넓이를 구하면? 8.

- ① $7\sqrt{2} \, \text{cm}^2$ ② $7\sqrt{3} \, \text{cm}^2$
- $\bigcirc 9\sqrt{2}\,\mathrm{cm}^2$
- $38\sqrt{2} \, \text{cm}^2$ $48\sqrt{3} \, \text{cm}^2$

(텔이) $= \frac{1}{2} \times 2 \times 16 \times \sin(180^{\circ} - 135^{\circ})$ $= \frac{1}{2} \times 2 \times 16 \times \sin 45^{\circ}$ $= \frac{1}{2} \times 2 \times 16 \times \frac{\sqrt{2}}{2} = 8\sqrt{2} \text{ (cm}^2)$

9. 다음 그림의 직육면체에서 $\angle AGE = x$ 라고 할 때, $\sin x \times \cos x$ 의 값을 구한 것으로 옳은 것은?

- ① $\frac{10\sqrt{2}}{57}$ ② $\frac{20\sqrt{2}}{57}$
- $\frac{2}{57}$

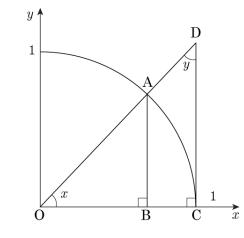
해설 $\overline{EG} =$

 $\overline{EG} = 4\sqrt{2}$ $\overline{AE} = 5$

AG = √57 따라서

따라서 $\sin x \times \cos x = \frac{5}{\sqrt{57}} \times \frac{4\sqrt{2}}{\sqrt{57}} = \frac{20\sqrt{2}}{57}$ 이다.

10. 직선 2x - y + 3 = 0 의 그래프와 x 축이 이루는 예각의 크기를 a 라할 때, $\tan a$ 의 값은?


① $\sqrt{3}$ ② 3 ③ $\sqrt{2}$ ④ 2

⑤ 1

 $2x - y + 3 = 0, \ y = 2x + 3$

 $\therefore \tan a = 2$

11. 다음 그림에서 반지름의 길이가 1 인 사분원을 이용하여 삼각비의 값을 선분의 길이로 나타낸 것 중 옳지 <u>않은</u> 것은?

- ① $\sin x = \overline{AB}$ ④ $\sin y = \overline{OB}$

 $\Im \tan x = \overline{\text{CD}}$

12. $\tan(x+15^\circ)=1$ 일 때, $\sin x+\cos x$ 의 값은? (단, $0^\circ < x < 90^\circ$)

①
$$\frac{\sqrt{3}}{2}$$
 ② 1
④ $\frac{3}{2}$ ③ $\frac{2+\sqrt{3}}{2}$

$$\boxed{3} \frac{1+\sqrt{3}}{2}$$

$$\tan 45^{\circ} = 1$$
 이므로 $x + 15^{\circ} = 45^{\circ}$, $x = 1$

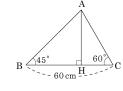
$$\sin 30^{\circ} = \frac{1}{2}, \cos 30^{\circ} = \frac{\sqrt{6}}{2}$$

 $\sin 30^{\circ} + \cos 30^{\circ} = \frac{1}{2} + \frac{\sqrt{6}}{2}$

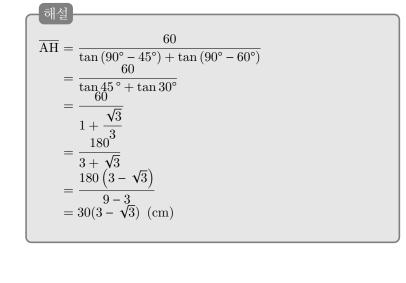
$$\tan 45^\circ = 1 \ \circ | \Box \exists \ x + 15^\circ = 45^\circ , \ x = 30^\circ$$

$$\sin 30^\circ = \frac{1}{2}, \ \cos 30^\circ = \frac{\sqrt{3}}{2}$$
∴
$$\sin 30^\circ + \cos 30^\circ = \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2}$$

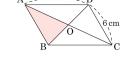
13. 삼각비의 표를 보고 다음을 만족하는 $x \div y + z$ 의 값은?


 $\sin x = 0.9397$

각도	sin	cos	tan
10°	0.1736	0.9848	0.1763
20°	0.3420	0.9397	0.3640
35°	0.5736	0.8192	0.7002
45°	0.7071	0.7071	1.0000
50°	0.7660	0.6428	1.1918
70°	0.9397	0.3420	2.7475
89°	0.9998	0.0175	57.2900

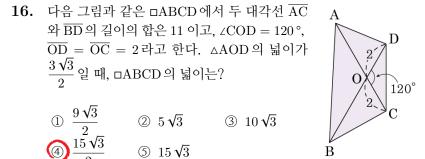

 $\tan y = 0.7002$ $\cos z = 0.9848$

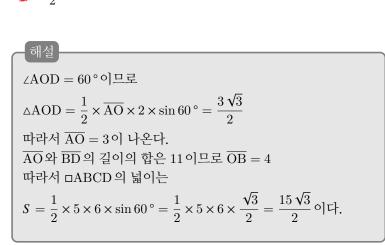
① 3 ② 5 ③ 6 ④ 10 ⑤ 12


 $x = 70^{\circ}, y = 35^{\circ}, z = 10^{\circ}$ $x \div y + z = 70 \div 35 + 10 = 2 + 10 = 12$ 14. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle B=45^\circ$, $\angle C=60^\circ$, $\overline{BC}=60\mathrm{cm}$ 일 때, \overline{AH} 의 길이를 구하면?

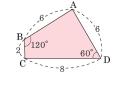
- ① $30(2 \sqrt{2})$ cm ③ $30(2 - \sqrt{3})$ cm
- ② $30(4 \sqrt{2})$ cm ④ $30(3 - \sqrt{3})$ cm
- $30 (4 \sqrt{3}) \text{ cm}$

15. 다음 그림과 같은 평행사변형 ABCD 에서 대각선 \overline{AC} , \overline{BD} 의 교점을 O 라고 하자. $\angle BCD = 60^\circ$, $\overline{AD} = 12 \mathrm{cm}$, $\overline{CD} = 6 \mathrm{cm}$ 일 때, $\triangle ABO$ 의 넓이를 구하면?




- $\bigcirc 9 \, \mathrm{cm}^2$
- $2 10 \,\mathrm{cm}^2$
- $3 9\sqrt{2} \,\mathrm{cm}^2$

해설


 $9\sqrt{3} \text{ cm}^2$ $5 10\sqrt{3} \text{ cm}^2$

(□ABCD의 넓이) = $12 \times 6 \times \sin 60^{\circ}$ = $12 \times 6 \times \frac{\sqrt{3}}{2}$ = $36\sqrt{3}$ (cm²) $\therefore \triangle ABO = 36\sqrt{3} \times \frac{1}{4} = 9\sqrt{3}$ (cm²)

17. 다음 그림의 □ABCD 의 넓이는?

- ① $9 + \sqrt{2}$ ② $10 + \sqrt{2}$ ④ $14\sqrt{2}$ ③ $15\sqrt{3}$
- ③ $12\sqrt{2}$

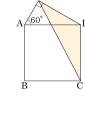
따라서

 $\square ABCD$

해설

$$| \Box ABCD |$$

$$= \triangle ABC + \triangle ACD |$$


$$= \frac{1}{2} \times 2 \times 6 \times \sin 120^{\circ} + \frac{1}{2} \times 6 \times 8 \times \sin 60^{\circ}$$

$$= 6 \times \frac{\sqrt{3}}{2} + 24 \times \frac{\sqrt{3}}{2}$$

$$= 3\sqrt{3} + 12\sqrt{3} = 15\sqrt{3}$$

$$= 3\sqrt{3} + 12\sqrt{3} = 18$$

18. 다음 그림에서 □ABCD 는 정사각형이고, ∠EAD = 60° 이다. 색칠한 부분의 넓이가 $72cm^2$ 일 때, 정사각형의 한 변의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

▶ 답:

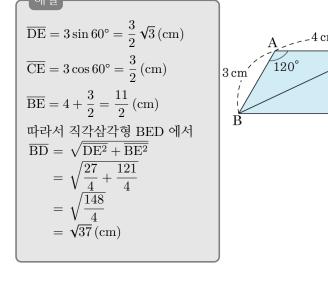
▷ 정답: 8√3 cm

해설

 $\angle EDA = 30^{\circ}$ $\overline{AD} = \overline{DC} = x$ 라 하면

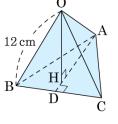
 $\overline{\mathrm{ED}} = \overline{\mathrm{AD}} \times \cos 30^{\circ} = \frac{\sqrt{3}}{2} x$ (색칠한 부분의 넓이) $\overline{\mathrm{AE}} = \overline{\mathrm{AD}} \times \cos 60^{\circ} = \frac{1}{2} x$

 $\frac{1}{2} \times \frac{\sqrt{3}}{2} x^2 \times \sin(120^\circ) = 72$ $\frac{3}{8} x^2 = 72 \qquad \therefore x = 8\sqrt{3} \text{(cm)}$


19. 다음 그림과 같은 평행사변형 ABCD 에서 대각선 BD 의 길이를 구하여라.

3 cm 120°

B C

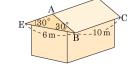

답:

정답: √37 cm

 $\underline{\mathrm{cm}}$

20. 한 모서리의 길이가 $12~{
m cm}$ 인 정사면체의 부피 를 구하여라.

ightharpoonup 정답: $144\sqrt{2}$ cm^3


답:

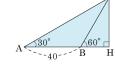
 $\overline{\rm AD} = 12 \times \cos 30^\circ = 6\sqrt{3} (\,{\rm cm})$ 이코, $\overline{\rm AH} = \frac{2}{3} \times \overline{\rm AD} = 4\sqrt{3} (\,{\rm cm})$ $\overline{OH} = \sqrt{12^2 - (4\sqrt{3})^2} = \sqrt{144 - 48} = 4\sqrt{6} \text{ (cm)}$

 $\underline{\mathrm{cm}^3}$

따라서 부피는
$$\frac{1}{3} \times \frac{\sqrt{3}}{4} \times 12^2 \times 4\sqrt{6} = 144\sqrt{2} \text{(cm}^3)$$
 이다.

21. 다음 그림과 같이 건물의 지붕이 합동인 직사각형 2 개로 이루어져있다. 이 건물의 지붕의 넓이를 구하여라.

 $\underline{\mathbf{m}^2}$


ightharpoonup 정답: $40\sqrt{3}$ $\underline{\mathrm{m}^2}$

점 A 에서 $\overline{\rm BE}$ 에 내린 수선의 발을 H 라 하면 $\overline{\rm BH}=3{
m m}$ 이고,

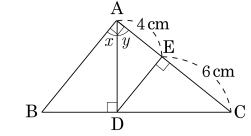
▶ 답:

 $\overline{AB} = \frac{3}{\cos 30^{\circ}} = 3 \times \frac{2}{\sqrt{3}} = 2\sqrt{3} \text{(m)}$ 이다.

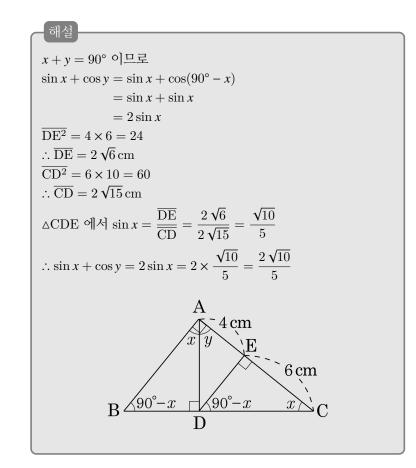
따라서 □ABCD = $2\sqrt{3} \times 10 = 20\sqrt{3} (\mathrm{m}^2)$ 이다. 그러므로 지붕의 넓이는 $2 \times 20\sqrt{3} = 40\sqrt{3} (\mathrm{m}^2)$ 이다. ${f 22}$. 다음 그림의 ΔABC 에서 $\angle A=30^\circ$, $\angle CBH=60^\circ$, $\overline{AB}=40$ 일 때, △ABC 의 넓이는?

- ① $20\sqrt{3}$ ② $200\sqrt{3}$
- $\boxed{3}400\sqrt{3}$
- (4) $600\sqrt{3}$ (5) $800\sqrt{3}$

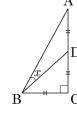
$$\overline{AH} = \frac{h}{\tan 30^{\circ}}, \overline{BH} = \frac{h}{\tan 60^{\circ}}$$


$$\overline{AB} = \overline{AH} - \overline{BH} = \frac{h}{\tan 30^{\circ}} - \frac{h}{\tan 60^{\circ}}$$

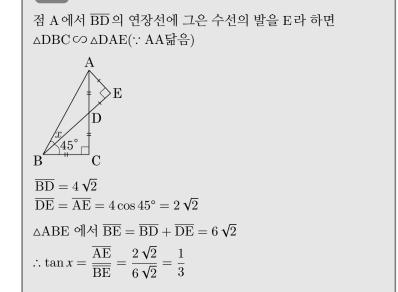
$$h\left(\frac{1}{\tan 30^{\circ}} - \frac{1}{\tan 60^{\circ}}\right) = 40, h\left(\frac{2}{\sqrt{3}}\right) = 40$$


$$\therefore h = 40 \times \frac{\sqrt{3}}{2} = 20\sqrt{3}$$

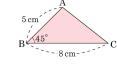
$$\triangle$$
ABC 의 넓이는 $40 \times 20 \sqrt{3} \times \frac{1}{2} = 400 \sqrt{3}$


23. 다음 그림과 같이 $\angle A$ 가 직각인 $\triangle ABC$ 의 꼭짓점 A 에서 변 BC 에 내린 수선의 발을 D 라 하고, D 에서 변 AC 에 내린 수선의 발을 E 라 한다. $\overline{AE} = 4 \mathrm{cm}, \ \overline{CE} = 6 \mathrm{cm}$ 이고, $\angle BAD = x, \angle CAD = y$ 일 때, $\sin x + \cos y$ 의 값은?

- ② $\frac{\sqrt{10}}{5}$ ⑤ $\frac{2\sqrt{1}}{3}$
- $3\frac{2}{5}$

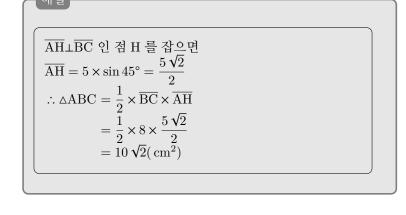


24. 다음 그림과 같이 $\angle C=90^\circ$ 인 $\triangle ABC$ 에서 $\overline{AD}=\overline{CD}=\overline{BC}=4$ 이고, $\angle ABD=x$ 라 할 때, $\tan x$ 의 값을 구하여라.



답:

ightharpoonup 정답: $rac{1}{3}$



25. 다음은 $\overline{AB}=5\mathrm{cm}$, $\overline{BC}=8\mathrm{cm}$ 이고, $\angle ABC=45^\circ$ 인 $\triangle ABC$ 의 넓이를 구하는 과정이다. 안에 알맞은 것을 바르게 나열한 것은?

 $\overline{AH} \perp \overline{BC}$ 인 점 H 를 잡으면 $\overline{AH} = 5 \times \boxed{} = \frac{5\sqrt{2}}{2}$ $\therefore \triangle ABC = \frac{1}{2} \times \boxed{}$ $= \frac{1}{2} \times 8 \times \frac{5\sqrt{2}}{2}$ $= 10\sqrt{2}(\text{cm}^2)$

- ① $\cos 45^{\circ}, \overline{BC} \times \overline{AH}$ ③ $\sin 45^{\circ}, \overline{BC} \times \overline{AH}$
 - ② $\tan 45^{\circ}, \overline{BC} \times \overline{AH}$ ④ $\sin 45^{\circ}, \overline{AC} \times \overline{BC}$

