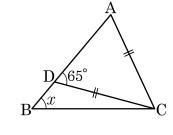
1. $\overline{BA} = \overline{BC}$ 인 이등변삼각형에서 $\overline{CA} = \overline{CD}$ 가 되도록 점 D를 변 AB 위에 잡았다. $\angle x$ 의 크기는?



 465°

⑤ 70°

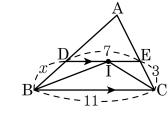
② 55° ③ 60°

 $\triangle ACD$ 가 이등변삼각형이므로 $\angle CAD = 65^{\circ}$

① 50°

또 $\triangle ABC$ 는 $\overline{BA} = \overline{BC}$ 인 이등변삼각형이므로 $\therefore \angle x = 180^{\circ} - 2 \times 65^{\circ} = 50^{\circ}$

다음 그림에서 점 I 는 $\triangle ext{ABC}$ 의 내심이고, $\overline{ ext{DE}} \, / \!\!/ \, \overline{ ext{BC}}$ 일 때, x 의 **2.** 길이는?

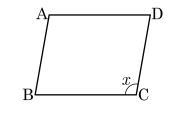


- ① 1 ② 2
- 3 3
- ⑤ 5

점 I 가 내심이고, \overline{DE} $//\overline{BC}$ 일 때, $\overline{DE} = \overline{DI} + \overline{EI} = \overline{DB} + \overline{EC}$

이므로 7 = 3 + x 이다. 따라서 x = 4 이다.

3. 평행사변형 ABCD 에서 \angle A : \angle B = 5 : 4 일 때, \angle x 의 크기는?

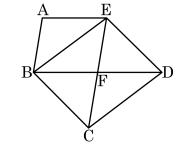


 $\angle A + \angle B = 180^{\circ}$, $\angle A : \angle B = 5 : 4$ 이므로

① 70° ② 80° ③ 90° ④ 95°

 $\angle A = 180^{\circ} \times \frac{5}{9} = 100^{\circ}$ $\angle A = \angle C$ 이므로 $\angle x = 100^{\circ}$

다음 그림과 같이 두 개의 평행사변형 ABFE 와 BCDE 가 주어졌을 때, 넓이가 <u>다른</u> 하나를 고르면? 4.



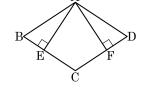
- \bigcirc $\triangle ABE$ **④** △BCE

그림에서 나눠진 작은 5개의 삼각형의 넓이는 모두 같다.

② $\frac{1}{2}$ \square ABFE ③ $\frac{1}{2}$ \triangle EBD ⑤ $\frac{1}{4}$ \square BCDE

해설

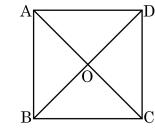
- 마름모 ABCD 에서 △ABE 와 △ADF 의 합 **5.** 동조건으로 적합한 것은 ?
 - ② ASA 합동 ① SSS 합동
 - ④RHA 합동 ③ SAS 합동
 - ⑤ RHS 합동



 $\overline{AB} = \overline{AD}, \ \angle B = \angle D, \ \angle AEB = \angle AFD = 90^{\circ}$ 이므로 $\triangle ABE \equiv$

△ADF(RHA 합동)

6. 다음 그림과 같은 정사각형 ABCD 에 대한 설명으로 옳지 않은 것을 모두 고르면?



- ① $\overline{AC} = \overline{DB}$ ④ $\overline{AB} = \overline{BC}$
- ② ∠AOB = 90°
- $\overline{\text{3}}\overline{\text{AD}} = \overline{\text{BD}}$

해설

 $\overline{\text{3}}\overline{\text{BC}} = \overline{\text{OC}}$

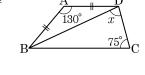
정사각형은 두 대각선은 길이가 같고, 서로 다른 것을 수직이등

분한다. 따라서 $\overline{AC} = \overline{DB}$ 이고, $\angle AOB = 90^\circ$, $\overline{AB} = \overline{BC}$ 이다.

 $\square ABCD$ 에서 $\overline{AD} /\!/ \overline{BC}$ 이고 $\overline{AB} = \overline{AD}$ 일 7. 때, *x* 의 크기는?

① 65°

② 68° 3 70° ⑤80°



④ 75°

 $\angle \mathrm{DBA} = \angle \mathrm{ADB} = (180\,^{\circ} - 130\,^{\circ}) \div 2 = 25\,^{\circ}$ x = 180 ° - (25 ° + 75 °) = 80 °

8. 다음 조건에 알맞은 사각형을 모두 구하면?

대각선이 서로 다른 것을 이등분한다.

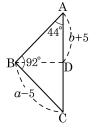
- ① 평행사변형, 등변사다리꼴, 마름모, 정사각형 ② 등변사다리꼴, 평행사변형, 마름모
- ③ 평행사변형, 직사각형, 마름모, 정사각형
- ④ 등변사다리꼴, 직사각형, 정사각형 ⑤ 마름모, 정사각형

평행사변형은 두 대각선이 서로 다른 것을 이등분한다. 직사

해설

각형, 마름모, 정사각형은 평행사변형의 성질을 가지므로 위의 성질도 가진다.

9. 다음 그림과 같은 $\triangle ABC$ 에서 \overline{BD} 는 $\angle ABC$ 를 이등분할 때, $\overline{AB}+\overline{CD}$ 를 a 와 b 에 관한 식으로 나타내어라.



 답:

 ▷ 정답:
 a+b

△ABC 에서

해설

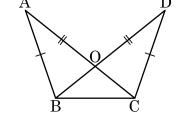
∠BCA = 180° - (92° + 44°) = 44° 따라서 △ABC 는 이등변삼각형이므로 ĀB = BC

또 \overline{BD} 는 $\angle ABC$ 를 이등분하므로 \overline{BD} 는 \overline{AC} 의 수직이등분선 이다.

따라서 $\overline{\mathrm{AD}} = \overline{\mathrm{CD}}$ 이다. $\therefore \overline{\mathrm{AB}} + \overline{\mathrm{CD}} = (a-5) + (b+5) = a+b$

 $\dots \Pi B + O B = (a - b)$

10. 다음 그림에서 $\overline{AB}=\overline{DC},\overline{AC}=\overline{DB}$ 그리고 $\angle BOC=84^\circ$ 일 때, ∠OBC 의 크기를 구하여라.



▶ 답: ▷ 정답: 48°

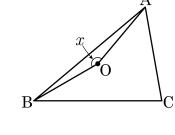
 $\triangle {\rm ABC} \equiv \triangle {\rm DCB}$ (SSS 합동)

해설

 $\angle ACB = \angle DBC$ 따라서 $\triangle OBC$ 는 이등변삼각형이다.

 $\therefore \angle OBC = (180^{\circ} - 84^{\circ}) \div 2 = 48^{\circ}$

11. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle A: \angle B: \angle C=2:3:4$ 이고 점 O는 $\triangle ABC$ 의 외심일 때, $\angle x$ 의 크기를 구하여라.

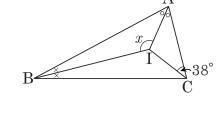


▷ 정답: 160<u>°</u>

▶ 답:

 $\angle C = 180^{\circ} \times \frac{4}{2+3+4} = 80^{\circ}$ $\therefore \angle x = 2\angle C = 160^{\circ}$

12. 다음 그림에서 점 I는 $\angle A$ 와 $\angle B$ 의 이등분선의 교점이다. 이 때, $\angle x$ 의 크기를 구하여라.



▷ 정답: 128°

▶ 답:

해설

.

 $38\,^{\circ} + \angle IAB + \angle IBC = 90\,^{\circ}$ 이므로 $\angle IAB + \angle IBC = 90\,^{\circ} - 38\,^{\circ} = 52\,^{\circ}$ 따라서 $\triangle IAB$ 에서 $\angle x = 180\,^{\circ} - (\angle IAB + \angle IBC)$

 $= 180 \degree - 52 \degree$ = 128 °

13. 다음 평행사변형 ABCD에서 ĀB = A - - 12cm - - 12c

 $\underline{\mathrm{cm}}$

정답: 7 cm

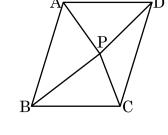
답:

해설

 $\overline{BE} = \overline{AB} = 5 \text{ cm}$ $\therefore \overline{EC} = 12 - 5 = 7 \text{ (cm)}$

 $\angle AEB = \angle EAD = \angle BAE$ 이므로

14. 다음 그림과 같이 밑변의 길이가 $6 \mathrm{cm}$, 높이가 $7 \mathrm{cm}$ 인 평행사변형 ABCD의 내부에 한 점 P를 잡았다. ΔPCD 의 넓이가 $7cm^2$ 일 때, △ABP의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$

▷ 정답: 14 cm²

답:

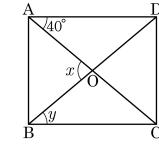
내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle ABP + \triangle PCD = $\triangle PAD + \triangle PBC$ 이다. 밑변의 길이가 6cm, 높이가 7cm 인평행사변형이므로

 $\triangle ABP + \triangle PCD = 42 \times \frac{1}{2} = 21 (cm^2)$ 이다.

평행사변형의 넓이는 $6 \times 7 = 42 (\text{cm}^2)$ 이다.

따라서 $\triangle PCD = 7cm^2$ 이므로 $\triangle ABP = 21 - 7 = 14(cm^2)$ 이다.

15. 다음 직사각형 ABCD 에서 $5 \angle x - 2 \angle y$ 의 크기를 구하면?



▷ 정답: 320°

답:

 $\triangle OAD$ 는 이등변 삼각형이므로 $\angle x = 40^{\circ} + 40^{\circ} = 80^{\circ}$ 이다.

△OAD ≡ △OBC 이므로 ∠y = 40° 이다. 따라서 5∠x - 2∠y = 5 × 80° - 2 × 40° = 320° 이다.

16. 다음 보기의 설명 중 옳은 것의 개수는?

마름모이다.

① 2개 ② 3개

보기-

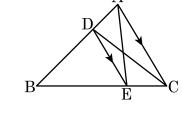
- ① 두 대각선이 서로 수직인 직사각형은 정사각형이다.
- © 이웃하는 두 변의 길이가 같은 평행사변형은 마름모이다.
- □ 한 내각의 크기가 90°인 평행사변형은 정사각형이다.□ 이웃하는 두 각의 크기가 같은 평행사변형은
- ② 한 내각이 직각인 평행사변형은 직사각형이다.
- ⊕ 한 내각의 크기가 90°인 마름모는 정사각형이다.↔ 두 대각선의 길이가 같은 마름모는 직사각형이다.

34개 **4**5개 **5**6개

© 한 내각의 크기가 90°인 평행사변형은 직사각형이다.

- ② 이웃하는 두 각의 크기가 같은 평행사변형은 직사각형이다.④ 두 대각선의 길이가 같은 마름모는 정사각형이다.
- WI WHEN E PIEC THAC OTHER

17. 다음 그림과 같은 $\triangle ABC$ 에서 \overline{AC} $/\!/ \overline{DE}$ 이고, $\triangle ABC = 40 cm^2$, $\Delta {
m ABE} = 25 {
m cm}^2$ 이다. $\Delta {
m ADC}$ 의 넓이가 $x {
m cm}^2$ 일 때, x의 값을 구 하여라.



▶ 답:

▷ 정답: 15

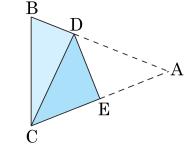
 $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{DE}}\,$ 이므로 밑변과 높이가 같으므로 $\Delta\mathrm{ADE}=\Delta\mathrm{DEC}$ 이

 $\Delta \mathrm{DBC} \,=\, \Delta \mathrm{DBE} + \Delta \mathrm{DEC} \,=\, \Delta \mathrm{DBE} + \Delta \mathrm{ADE} \,=\, \Delta \mathrm{ABE} \,=\,$

 $25(\mathrm{cm}^2)$ $\therefore \triangle ADC = \triangle ABC - \triangle DBC = 40 - 25 = 15 (cm^2)$

 $\therefore x = 15$

18. 다음 그림은 $\angle B = \angle C$ 인 삼각형 ABC 를 점 A 가 점 C 에 오도록 접은 것이다. $\angle DCB = 25^{\circ}$ 일 때, $\angle A$ 의 크기를 구하여라.



ightharpoonup 정답: $\frac{130}{3}$ $\stackrel{\circ}{-}$

답:

 $\angle A = \angle x$ 라 하면

해설

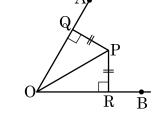
 $\angle \text{DCE} = \angle A = \angle x$

 $\angle B = \angle C = \angle x + 25^{\circ}$ ΔABC 에서 세 내각의 크기의 합은 180° 이므로

 $\angle x + 2(\angle x + 25^\circ) = 180^\circ$

 $3\angle x = 130^{\circ}, \ \angle x = \frac{130^{\circ}}{3}$ $\therefore \ \angle A = \frac{130^{\circ}}{3}$

19. 다음 그림과 같이 $\angle AOB$ 의 내부의 한 점 P 에서 각 변에 수선을 그어 그 교점을 Q, R 이라 하자. $\overline{PQ} = \overline{PR}$ 이라면, \overline{OP} 는 $\angle AOB$ 의 이등분선임을 증명하는 과정에서 $\triangle QOP \equiv \triangle ROP$ 임을 보이게 된다. 이 때 사용되는 삼각형의 합동 조건은?



② 한 변과 그 양끝각이 같다.

① 두 변과 그 사이 끼인각이 같다.

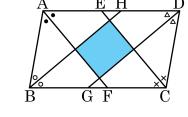
- ③ 세 변의 길이가 같다.
- ④ 직각삼각형의 빗변과 한 변의 길이가 각각 같다.

같은 RHS 합동이다.

- ⑤ 직각삼각형의 빗변과 한 예각의 크기가 각각 같다.

 $\overline{\mathrm{OP}}$ 는 공통이고 $\overline{\mathrm{PQ}}$ = $\overline{\mathrm{PR}}$ 이므로, 빗변과 다른 한 변의 길이가

20. 사각형 ABCD 가 평행사변형일 때, 색칠한 부분이 어떤 사각형이 되는지 구하여라. (단, $\overline{\rm AF}$ // $\overline{\rm EC}$, $\overline{\rm BH}$ // $\overline{\rm GD}$)



답:

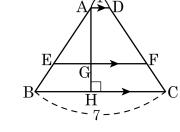
▷ 정답: 직사각형

2(◦+•) = 180° 이므로 ◦+• = 90°

해설

따라서 색칠한 부분의 사각형의 한 내각의 크기가 90°이므로 직사각형이다. ${f 21}$. 다음 그림과 같이 등변사다리꼴 ${
m ABCD}$ 에서 ${
m \overline{AD}}$ // ${
m \overline{BC}}$ // ${
m \overline{EF}}$, ${
m \overline{AH}}$ \perp ${
m \overline{BC}}$ 이다. $\overline{\mathrm{AG}}$: $\overline{\mathrm{GH}}=2$: 1이고, 사다리꼴 AEFD와 EBCF의 넓이가 같을 때,

 $\overline{\mathrm{EG}}$ 의 길이를 구하여라.



① 1

③ 3 ④ 4 ⑤ 5

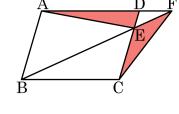
 $\overline{\mathrm{AG}}=2a,\;\overline{\mathrm{GH}}=a,\overline{\mathrm{EF}}=b$ 라 하면

□AEFD = □EBCF이므로 $\frac{(7+b) \times a}{2} = \frac{(b+1) \times 2a}{2}$ $\therefore b = 5$ $\therefore \overline{EG} = \frac{\overline{EF} - \overline{AD}}{2} = \frac{5-1}{2} = 2$

$$\frac{(1+b)\times a}{2} = \frac{(b+1)\times a}{2}$$

$$\therefore b = 5$$

22. 다음 그림과 같은 평행사변형 ABCD에서 $\overline{\rm DE}:\overline{\rm EC}=1:3$ 이다. $\Box {\rm ABCD}$ 의 넓이가 60일 때, $\triangle {\rm ADE}+\triangle {\rm FEC}$ 의 넓이를 구하여라.

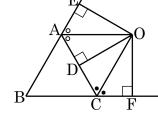


답: ▷ 정답: 15

 $\triangle ADE$ 와 $\triangle BCE$ 는 높이는 같고 밑변이 1:3이므로 $\triangle ADE:$ $\triangle BCE=1:3$ $\triangle ADE=\triangle ACD\times\frac{1}{1+3}=\frac{1}{2}\square ABCD\times\frac{1}{4}$ $=\frac{1}{8}\square ABCD$ $\triangle BCE=3\triangle ADE=\frac{3}{8}\square ABCD$ $\overline{AF}/\!\!/\,\overline{BC}$ 이므로 $\triangle FBC=\triangle DBC=\frac{1}{2}\square ABCD$ $\triangle FEC=\triangle FBC-\triangle BCE=\left(\frac{1}{2}-\frac{3}{8}\right)\times\square ABCD=\frac{1}{8}\square ABCD$ $\therefore\triangle ADE+\triangle FEC=\frac{1}{4}\square ABCD=\frac{1}{4}\times60=15$

23. 아래 그림에서 $\triangle ABC$ 의 $\angle A$ 의 외각의 이등분선과 $\angle C$ 의 외각의 이 등분선의 교점을 O 라 하고, O 에서 \overline{AB} 의 연장선과 \overline{CB} 의 연장선에 내린 수선의 발을 각각 E,F 라고 할 때, 다음 중 성립하지 않는 것은 고르면?

E



① $\angle DOC = \angle FOC$

 $\textcircled{4} \quad \triangle EOA \equiv \triangle DOA$

 \bigcirc $\angle AOD = \angle COD$

 $\triangle AOE \equiv \triangle AOD(RHA 합동),$

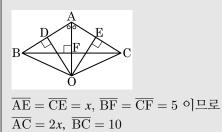
해설

△COD ≡ △COF(RHA 합동)

 ${f 24}$. 다음 그림과 같이 ${f AB}={f AC}$ 인 이등변삼각형 ABC 의 외심은 점 O 이고, 점 O 에서 AB, AC 에 내린 수선의 발은 각각 D, E 이다. 또 점 A 에서 \overline{BC} 에 내린 수선의 발은 F 이다. $\overline{OE}=6,\ \overline{BF}=5,\ \overline{OF}=3$ 이고, $\triangle ABC$ 의 넓이가 52 일 때, \overline{AB} 의 길이를 구하여라.

답:

ightharpoonup 정답: $rac{67}{6}$



△OAD 와 △OAE 에서

 $\angle {\rm ODA} = \angle {\rm OEA} = 90$ °, $\overline{\rm OA}$ 는 공통, $\angle {\rm OAD} = \angle {\rm OAE}$ (.:

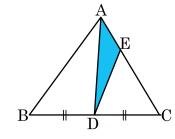
△ABC 는 이등변삼각형) 이므로

 $\triangle OAD \equiv \triangle OAE (RHA 합동)$ $\therefore \overline{\mathrm{OD}} = \overline{\mathrm{OE}} = 6$

이때, $\triangle ABC = \triangle OAB + \triangle OAC - \triangle OBC$ 이므로 $52 = \frac{1}{2} (\overline{AB} \times \overline{OD} + \overline{AC} \times \overline{OE} - \overline{BC} \times \overline{OF})$

 $52 = \frac{1}{2} \times (2x \times 6 + 2x \times 6 - 10 \times 3)$ $\therefore x = \frac{67}{12}$ $\therefore \overline{AB} = \overline{AC} = 2 \times \frac{67}{12} = \frac{67}{6}$

 ${f 25}$. 다음 그림과 같이 ΔABC 에서 \overline{AE} : $\overline{EC}=1$: 2이고 $\Delta AED=4{
m cm}^2$ 일 때, △ABC 의 넓이는?



- $2 16 \text{cm}^2$
- $3 20 \text{cm}^2$
- 424cm²
- \bigcirc 28cm²

 $\overline{AE}:\overline{EC}=1$: 2, $\triangle AED=4$ 이므로 $\triangle CDE=8$, $\triangle ADC=$ 4 + 8 = 12 $\overline{\mathrm{BD}} = \overline{\mathrm{CD}}$ 이므로 $\triangle \mathrm{ADC} = \triangle \mathrm{ADB}$

 $\therefore \triangle ABC = 2\triangle ADC = 24(cm^2)$