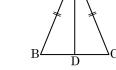
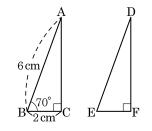
- 다음 그림과 같이 AB = AC 인 이등변삼각형 ABC에서 ∠BAD = ∠CAD일 때, 다음 중 옳지 않은 것은?
 ① AD = BC
 ② ∠ADB = ∠ADC
- ⑤ ∠B = ∠C
- 0 =---



다음 그림과 같은 △ABC와 △DEF가 합동일 2. 때 $\overline{\mathrm{EF}}$ 의 길이와 $\angle{\mathrm{D}}$ 의 크기를 구하여라.



▶ 답:

ightharpoonup 정답 : $\overline{\mathrm{EF}}=2$ $\underline{\mathrm{cm}}$ ▷ 정답: ∠D = 20 _

▶ 답:

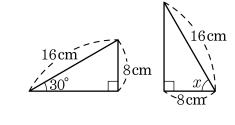
대응하는 변의 길이와 대응하는 각의 크기는 각각 같다.

해설

 $\therefore \overline{\mathrm{EF}} = \overline{\mathrm{BC}} = 2 (\mathrm{\,cm}), \ \angle \mathrm{D} = 20\,^{\circ}$

 $\underline{\mathrm{cm}}$

3. 다음 두 직각삼각형의 합동조건을 쓰고 $\angle x$ 의 크기를 구하여라.



<u>합동</u>

 ▶ 답:
 _°

 ▷ 정답:
 RHS 합동

▷ 정답: 60 °

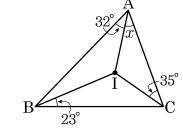
한 각이 직각(R)이고, 빗변의 길이(H)가 같고, 다른 한 변의

 $\therefore \angle x = 90^{\circ} - 30^{\circ} = 60^{\circ}$

길이(S)가 같으므로, RHS 합동

▶ 답:

4. 다음 그림에서 점 I가 $\triangle ABC$ 의 내심일 때 $\angle x = ($)°이다. () 안에 들어갈 알맞은 수를 구하여라.



 ► 답:

 ▷ 정답:
 32

삼각형의 세 내각의 이등분선의 교점이 삼각형의 내심이다. 따

라서 ∠BAI = ∠CAI = 32°이다.

- 5. 다음은 삼각형 모양의 종이를 오려서 최대한 큰 원을 만드는 과정이다. 빈 줄에 들어갈 것으로 옳은 것은?
 - 1. 세 내각의 이등분선을 긋는다. 2. 세 내각의 이등분선의 교점을 I 라고 한다.
 - 3.4.그린 원을 오린다.

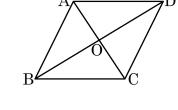
 - ① 점 I 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다. ② 점 I 에서 꼭짓점까지의 거리를 반지름으로 하는 원을 그린다
 - ③ 세 변의 수직이등분선의 교점을 O 라고 한다.
 - ④ 점 O 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다.
 - ⑤ 점 O 에서 꼭짓점까지의 거리를 반지름으로 하는 원을 그린다.

1. 세 내각의 이등분선을 긋는다.

해설

- 2. 세 내각의 이등분선의 교점을 I 라고 한다.
- 3. 점 I 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다.
- 4. 그린 원을 오린다.

6. 다음 그림과 같은 $\square ABCD$ 에서 \overline{AB} $//\overline{CD}$, $\overline{AB} = \overline{CD}$ 일 때, $\square ABCD$ 는 어떤 사각형인가? (단, 점 O 는 두 대각선의 교점이다.)



답:

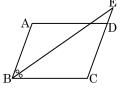
▷ 정답: 평행사변형

한 쌍의 대변이 평행하고 그 길이가 같은 사각형은 평행사변형

해설

이다.

7. 평행사변형 ABCD 에서 BE 는 ∠ABC 의 이 등분선이다. AB = 7cm, AD = 9cm 일 때, CE 의 길이를 구하시오.



▷ 정답: 9<u>cm</u>

▶ 답:

 $\overline{\mathrm{AB}} /\!/ \overline{\mathrm{CD}}$ 이므로

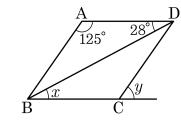
해설

∠ABE = ∠BEC (엇각) ∠EBC = ∠BEC 이므로 ΔBEC 는 이등변삼각형이다.

 $\therefore \overline{CE} = \overline{BC} = \overline{AD} = 9(cm)$

 $\underline{\mathrm{cm}}$

8. 다음 그림과 같은 평행사변형ABCD 에서 $\angle y - \angle x$ 의 값은?



해설

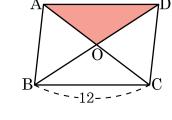
① 23° ② 24° ③ 26°

 $\angle BAD + \angle ADB + \angle BDC = 180\,^{\circ}$

125°+28°+ ∠BDC = 180°이므로 $\angle BDC = 27^{\circ}$

 $\angle x + \angle \mathrm{BDC} = \angle y$, $\angle y - \angle x = 27\,^\circ$

9. 다음 평행사변형 ABCD에서 $\overline{BC} = 12$ 이고 두 대각선의 합이 36일 때, 어두운 부분의 둘레의 길이는?



① 15 ② 20 ③ 25

430

⑤ 35

 $\Delta {
m AOD}$ 의 둘레는 $\overline{
m AO}$ + $\overline{
m OD}$ + $\overline{
m AD}$ 이므로

해설

 $\overline{AO}+\overline{OD}$ 는 두 대각선의 합의 $\frac{1}{2}$ 이므로 18이고, $\overline{AD}=\overline{BC}$ 이므로 둘레는 12+18=30이다.

 ${f 10.}$ 평행사변형 ABCD 의 ${f AB}$ 의 중점을 E , $\overline{\text{CD}}$ 의 중점을 F 라 하고 그림과 같이 $\overline{\text{ED}}$, $\overline{\mathrm{BF}}$ 를 그었을 때, $\angle\mathrm{BED}$ 와 크기가 같은 각을 구하여라.

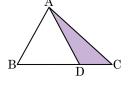
▶ 답: ▷ 정답: ∠ BFD

 ΔEAD , ΔFCB 에서 $\overline{AE}=\overline{FC}$, $\overline{AD}=\overline{BC}$, $\angle EAD=\angle BCF$

이므로 SAS 합동이다. 그러므로 $\overline{\mathrm{EB}}=\overline{\mathrm{DF}}$, $\overline{\mathrm{ED}}=\overline{\mathrm{BF}}$ 이고, $\Box\mathrm{EBFD}$ 는 평행사변형 이다.

따라서 ∠BED = ∠BFD 이다.

11. 다음 $\triangle ABC$ 의 넓이는 $30\,\mathrm{cm}^2$ 이다. $\overline{\mathrm{BD}}$ 의 길이가 $\overline{\mathrm{DC}}$ 의 길이보다 2배 길다고 할 때, △ADC 의 넓이를 구하여라.



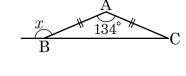
▷ 정답: 10 cm²

답:

 $\overline{\rm DC}$ 의 길이는 $\overline{\rm BD}$ 의 길이의 $\frac{1}{2}$ 이므로 $\overline{\rm BC}$ 의 길이의 $\frac{1}{3}$ 이 된다. 그러므로 넓이도 삼각형 ABC 의 넓이의 $\frac{1}{3}$ 이 된다. 따라서 $\Delta {\rm ADC}$ 의 넓이는 $10\,{\rm cm}^2$ 이다.

 $\underline{\mathrm{cm}^2}$

12. 다음 그림과 같이 $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC 에서 $\angle A=134^\circ$ 일 때, $\angle x$ 의 크기를 구하여라.



 답:

 ▷ 정답:
 157°

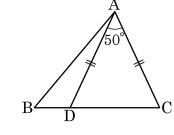
► 9H • 191_

△ABC 는 이등변삼각형이므로

 $\angle ABC = \frac{1}{2}(180^{\circ} - 134^{\circ}) = 23^{\circ}$

 $\therefore \angle x = 180^{\circ} - 23^{\circ} = 157^{\circ}$

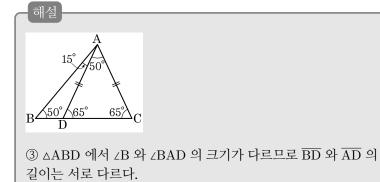
13. 다음 그림에서 $\triangle ABC$ 는 $\overline{AB}=\overline{BC}$ 인 이등변삼각형이다. 다음 그림을 보고 옳지 않은 것을 모두 고르면?(정답 2개)



② ∠B 와 ∠BAD 의 크기의 합은 65° 이다.

① $\angle B = \angle CAD$ 이다.

- ③BD 와 AD 의 길이는 서로 같다.
- ④ △ABC 와 △ACD 의 밑각의 크기는 모두 같다.
- ⑤ /B 와 /BAD 의 크기는 같다.



- ⑤ ∠B = 50° ∠BAD = 15° 이므로 크기는 다르다.

14. 다음 그림은 $\angle B$ 가 직각인 삼각형이다. $\triangle ABC$ 의 외접원의 반지름의 길이를 구하여라.

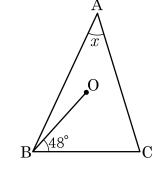
▶ 답: $\underline{\mathrm{cm}}$ ▷ 정답: 8 cm

직각삼각형의 외심은 빗변의 중심을 지나므로 외심 $O \leftarrow \overline{AC}$ 의

A-D---16cm 5cm

외심에서 각 꼭짓점에 이르는 거리는 반지름으로 모두 같으므로 외접원의 반지름은 $\overline{OA} = \overline{OC} = \overline{OB} = \frac{16}{2} = 8(cm)$

15. 다음 그림에서 점 O가 \triangle ABC의 외심이라고 할 때, \angle OBC = 48° 이다. $\angle x$ 의 크기는?



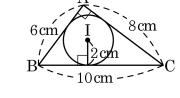
 344° 46° 548°

 $\angle OBC = \angle OCB = 48^{\circ}$ $\angle BOC = 84^{\circ}$ $\triangle ABC$ 에서 $\angle BAC = \frac{1}{2} \angle BOC = 42$ °

△OBC는 이등변삼각형이므로

① 40° ② 42°

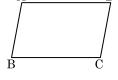
16. 다음 그림과 같이 세 변의 길이가 각각 6cm, 8cm, 10cm 인 삼각형 △ABC 가 있다. 점 I 는 △ABC 의 내심이고 내접원의 반지름의 길이가 2cm 일 때 △ABC 의 넓이는?



- ① 16cm² ④ 22cm²
- ② 18cm^2 ③ 24cm^2
- $3 20 \text{cm}^2$

 $\triangle ABC = \frac{1}{2} \times 2 \times (6 + 8 + 10) = 24 \text{ cm}^2$ 이다.

- **17.** 다음 중 다음 □ABCD 가 평행사변형이 되지 <u>않는</u> 것은?



② $\triangle ABD \equiv \triangle CDB$

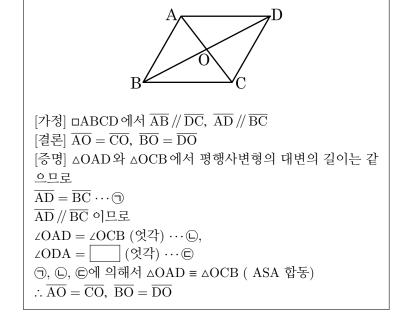
① $\angle A = \angle C, \overline{AB}//\overline{DC}$

- $\overline{\text{3}}\overline{\text{AB}}//\overline{\text{DC}}, \ \overline{\text{AD}} = \overline{\text{BC}}$ $\textcircled{4} \ \overline{AD} = \overline{BC}, \ \angle A + \angle B = 180^{\circ}$
- \bigcirc $\angle A + \angle B = 180^{\circ}, \ \angle A + \angle D = 180^{\circ}$

③ 평행사변형이 되려면 한 쌍의 대변이 평행하고 그 길이가

같아야 한다.

18. 다음은 '평행사변형에서 두 대각선은 서로 다른 것을 이등분한다.' 를 증명한 것이다. □ 안에 들어갈 알맞은 것은?



4 ∠OBC

① ∠ODA

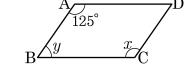
⑤ ∠BCO

② ∠OAB ③ ∠CDO

해설

 ΔOAD 와 ΔOCB 에서 평행사변형의 대변의 길이는 같으므로 $\overline{AD}=\overline{BC}, \overline{AD}/\!\!/\overline{BC}$ 이고

∠OAD = ∠OCB (엇각), ∠ODA = ∠OBC (엇각)이므로 △OAD ≡ △OCB (ASA 합동)이다. **19.** 다음 그림과 같이 $\angle A = 125\,^{\circ}$ 인 $\Box ABCD$ 가 평행사변형이 되도록 하는 $\angle x$, $\angle y$ 의 크기를 구하여라.



답: ______

 $ightharpoonup ext{ 정답: } \angle x = 125^{\circ}_{-}$ $ightharpoonup ext{ 정답: } \angle y = 55^{\circ}_{-}$

▶ 답:

 $\angle x = 125^{\circ}, \ \angle y = 180^{\circ} - 125^{\circ} = 55^{\circ}$

- 20. 다음 그림과 같이 평행사변형 ABCD 의 각 변의 중점을 P, Q, R, S 라고 할 때, □PQRS 는 어떤 도형이 되는가?
 ① 정사각형
 ② 마름모
 - P R R
 - ③ 직사각형
- ④ 평행사변형
- 9 -1: 1-1 0
- ⑤ 사다리꼴

해설 두 쌍의 대변의 길이가 각각 같으므로 평행사변형이다.

21. 넓이가 32 인 평행사변형 ABCD 에서 \overline{AD} 와 \overline{BC} 의 중점을 각각 M, N 이라 할 때, $\triangle ANM$ 의 넓이를 구하여라.

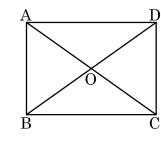


▶ 답: ▷ 정답: 8

 $\Box ABNM = \frac{1}{2}\Box ABCD \ \circ | \, \boxdot$

 $\triangle ANM = \frac{1}{2} \square ABNM$ 이므로 $\triangle ABE = \frac{1}{4} \square ABCD = \frac{1}{4} \times 32 = 8 \text{ 이다.}$

22. 다음 그림의 직사각형 ABCD 가 정사각형이 되기 위한 조건을 모두 고르면? (정답 2 개)



 $\overline{\text{(1)}}\overline{\text{AB}} = \overline{\text{BC}}$

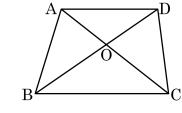
 $4 \triangle AOB = \angle AOD$

 \bigcirc $\overline{AC} = \overline{BD}$

해설

① $\overline{AB} = \overline{DC}$, $\overline{BC} = \overline{AD}$ 이고, $\overline{AB} = \overline{BC}$ 이면 네 변의 길이가 모두 같고, 네 각의 크기가 모두 같으므로 정사각형이다. ④ $\angle AOB = \angle AOD$ 일 때, $\triangle AOB$ 와 $\triangle AOD$ 에서 \overline{AO} 는 공통, $\overline{\mathrm{BO}}=\overline{\mathrm{DO}}$, $\angle\mathrm{AOB}=\angle\mathrm{AOD}=90^\circ$ 이므로 $\triangle\mathrm{AOB}\equiv\triangle\mathrm{AOD}$ (SAS 합동) 대응변의 길이가 같으므로 $\overline{\mathrm{AB}} = \overline{\mathrm{AD}}$ 평행사변형에서 $\overline{AB}=\overline{DC}$, $\overline{AD}=\overline{BC}$ 이므로 $\overline{AB}=\overline{BC}=$ $\overline{\mathrm{CD}} = \overline{\mathrm{DA}}$ 따라서 네 변의 길이가 모두 같고 네 내각의 크기가 모두 같으므 로 정사각형이다.

23. 다음 그림의 □ABCD 는 AD//BC 인 사다리꼴이다. 두 대각선의 교점을 O 라 할 때, △ABC = 50cm², △DOC = 15cm² 이다. 이 때, △OBC 의 넓이는?

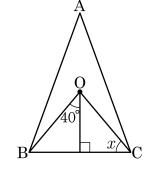


① 25cm² ④ 55cm² 235cm^2 565cm^2

 345cm^2

해설

 $\triangle ABC = \triangle DBC$ 이므로 $\triangle ABO = \triangle DOC$ $\therefore \triangle OBC = 50 - 15 = 35(cm^2)$ **24.** 다음 그림에서 점 O 가 \triangle ABC 의 외심일 때, $\angle x$ 의 크기를 구하여라.



▷ 정답: 50°

답:

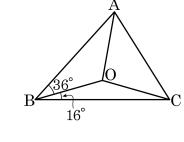
점 O 에서 선분 BC 로 내린 수선의 발을 점 D 라고 할 때,

△OBD ≡ △ODC 이므로, ∠BOD = ∠DOC = 40°이다.

프라서 $x 는 180^{\circ} - 90^{\circ} - 40^{\circ} = 50^{\circ}$ 이다.

따라서 x 는 180° - 90° - 40°

25. \triangle ABC 에서 점 O 는 외심이다. \angle OAC 의 크기를 구하여라.

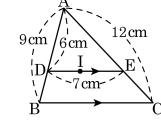


▷ 정답: 38°

▶ 답:

해설

 $\angle OAC + \angle OBA + \angle OCB = 90^{\circ}$ $\angle OAC = 90^{\circ} - (36^{\circ} + 16^{\circ}) = 38^{\circ}$ 26. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이고 $\overline{DE}//\overline{BC}$ 라고 할 때, $\overline{AE}=($)cm이다. 빈 칸에 들어갈 수를 구하여라.



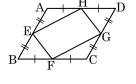
답:

▷ 정답: 8

점 I 가 내심이고 $\overline{
m DE}//\overline{
m BC}$ 일 때,

 $(\triangle ADE$ 의 둘레의 길이 $)=\overline{AB}+\overline{AC}$ $\overline{AB}+\overline{AC}=9+12=21(cm)$ $(\triangle ADE$ 의 둘레의 길이 $)=\overline{AD}+\overline{AE}+\overline{DE}=6+\overline{AE}+7=21(cm)$ 이다. 따라서 $\overline{AE}=8cm$ 이다.

27. 다음 그림과 같은 평행사변형 ABCD 의 각 변의 중점을 차례로 E, F, G, H 라 할 때, □EFGH 는 어떤 사각형인지 구하여라.



▶ 답:

▷ 정답: 평행사변형

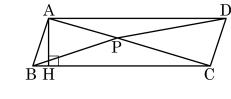
\square ABCD 가 평행사변형이므로 \angle A = \angle C, \angle B = \angle D 이다.

해설

SAS 합동 조건에 따라 \triangle AEH = \triangle FCG, \triangle EBF = \triangle HGD 이 므로 $\overline{\mathrm{EH}} = \overline{\mathrm{FG}}, \ \overline{\mathrm{EF}} = \overline{\mathrm{HG}}$ 이다. 두 쌍의 대응변의 길이가 같으므로 사각형 HEFG 는 평행사변

형이다.

28. 다음 그림과 같은 평행사변형 ABCD에서 $\overline{\mathrm{AD}}=15\mathrm{cm},$ ΔPAB + $\Delta PCD = 30 cm^2$ 일 때, \overline{AH} 의 길이는?



 \bigcirc 2cm

②4cm

③ 6cm

4 8cm

 \bigcirc 10cm

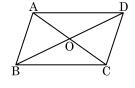
해설

내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD = $\triangle PAD + \triangle PBC$ 이다. $\Delta PAB + \Delta PCD = 30 cm^2$ 이므로 평행사변형의 넓이는 $30 \times 2 =$

(60cm²)이다. 카로의 길이 $\overline{AD}=15 \mathrm{cm}$ 이므로 $\overline{AD} \times \overline{AH}=15 \times \overline{AH}=60 \mathrm{(cm^2)}$

이다. ∴ $\overline{AH} = 4(cm)$ 이다.

29. 다음 그림은 □ABCD 가 평행사변형이라고 할 때, □ABCD 가 직사각형이 되기 위한 조건이 <u>아닌</u> 것은?



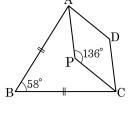
① $\overline{OA} = \overline{OB}$ ④ $\overline{AC} = \overline{BD}$

해설

 $\overline{\text{OC}} = \overline{\text{OD}}$

①, ③한 내각이 직각이고 두 대각선의 길이가 같은 평행사변형은

- 직사각형이다. ② 하지만 AC⊥BD 는 조건에 만족하지 않는다. (∵ 마름모)



▷ 정답: 83°

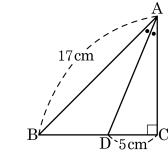
▶ 답:

 $\overline{\mathrm{AC}}$ 를 이으면

 $\angle BCA = (180^{\circ} - 58^{\circ}) \div 2 = 61^{\circ}$

 $\angle ACD = (180^{\circ} - 136^{\circ}) \div 2 = 22^{\circ}$ $\therefore \angle BCD = \angle BCA + \angle ACD = 83^{\circ}$

31. 다음 그림에서 $\angle C=90^\circ$ 이고, $\overline{AC}=\overline{BC}$ 인 직각이등변삼각형 ABC 에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D 라 하고, \overline{AB} = 17cm, $\overline{DC} = 5$ cm 일 때, $\triangle ABD$ 와 $\triangle ADC$ 의 넓이의 차는?



- ① $\frac{11}{2}$ cm² ② $\frac{25}{2}$ cm² ③ $\frac{75}{2}$ cm² ④ 33 cm² ⑤ 51cm²

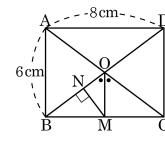
점 D 에서 \overline{AB} 에 내린 수선과의 교점을 H 라 하면, $\triangle AHD$ = △ACD(RHA합동)

 ΔBHD 는 직각이등변삼각형이므로 $\overline{DC}=\overline{DH}=\overline{BH}=5(cm)$

 $\frac{1}{2} = 30 (\mathrm{cm}^2)$ 이다.

 $\triangle ABD$ 와 $\triangle ADC$ 의 넓이의 차는 $\frac{85}{2}-30=\frac{25}{2}(\mathrm{cm}^2)$ 이다.

32. 다음 그림과 같은 직사각형 ABCD에서 $\overline{BD}=10\,\mathrm{cm}$ 이다. $\angle BOM=\angle COM,\ \overline{MN}\bot\overline{OB}$ 일 때, \overline{MN} 의 길이는?



- 1.2 cm
 3.6 cm
- ② 1.6 cm ⑤ 4.8 cm
- ③2.4 cm
- **...** 5.0 C

$$\overline{\mathrm{BO}} = \frac{1}{2}\overline{\mathrm{BD}} = \frac{1}{2} \times 10 = 5 \, (\mathrm{cm})$$

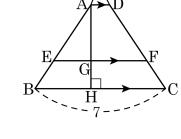
$$\Delta \mathrm{OBM} = \frac{1}{2} \times 4 \times 3 = \frac{1}{2} \times 5 \times \overline{\mathrm{MN}}$$

$$\therefore \overline{\mathrm{MN}} = 2.4 \, (\mathrm{cm})$$

 ${f 33.}$ 다음 그림과 같이 등변사다리꼴 ${
m ABCD}$ 에서 ${
m \overline{AD}}$ ${
m //}$ ${
m \overline{BC}}$ ${
m //}$ ${
m \overline{EF}}$, ${
m \overline{AH}}$ ${
m \bot}$ ${
m \overline{BC}}$ 이다. $\overline{\mathrm{AG}}$: $\overline{\mathrm{GH}}=2$: 1이고, 사다리꼴 AEFD와 EBCF의 넓이가 같을 때,

① 1

 $\overline{\mathrm{EG}}$ 의 길이를 구하여라.



③ 3 ④ 4 ⑤ 5

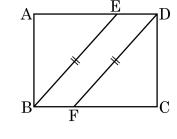
□AEFD = □EBCF이므로 $\frac{(7+b) \times a}{2} = \frac{(b+1) \times 2a}{2}$ $\therefore b = 5$ $\therefore \overline{EG} = \frac{\overline{EF} - \overline{AD}}{2} = \frac{5-1}{2} = 2$

 $\overline{\mathrm{AG}}=2a,\;\overline{\mathrm{GH}}=a,\overline{\mathrm{EF}}=b$ 라 하면

$$\begin{array}{c}
2 \\
\therefore b = 5
\end{array}$$

$$\frac{1}{EC} = \frac{\overline{EF} - \overline{A}}{\overline{EF}}$$

34. 다음 그림과 같은 직사각형 ABCD의 변 AD, BC 위에 $\overline{\mathrm{BE}}=\overline{\mathrm{FD}}$ 가 되도록 점 E, F를 잡을 때, □EBFD는 어떤 사각형인가?



- ① 등변사다리꼴 ④ 직사각형
- ② 평행사변형 ③ 마름모 ⑤ 정사각형

해설

 $\triangle ABF \equiv \triangle CDF (RHA 합동) 이므로$

 $\overline{AE} = \overline{CF}$ 따라서 $\overline{ED} = \overline{BF}$ 한편 $\overline{\mathrm{BE}} = \overline{\mathrm{DF}}$ 이므로 $\square\mathrm{EBFD}$ 는 평행사변형이다.

35. 다음 설명 중 옳지 <u>않은</u> 것은?

- ① 두 대각선이 서로 다른 것을 이등분하는 사각형은 등변사다리꼴이다.
- ② 두 대각선의 길이가 같은 평행사변형은 직사각형이다.
- ③ 등변사다리꼴의 두 대각선은 길이가 같다.
- ④ 두 대각선이 서로 수직인 평행사변형은 마름모이다.⑤ 두 대각선이 서로 다른 것을 수직이등분하는 평행사변형은
- 마름모이다.

① 두 대각선이 서로 다른 것을 이등분하는 사각형은 평행사변

해설

형이다.