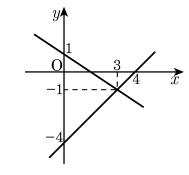
다음 그래프를 보고, 방정식 $y = x - 4 = -\frac{2}{3}x + 1$ 의 해를 구하면?



- (-1, 3) ② (3, -1) ③ (1, -1) (−3, 1) **⑤** (1, −3)

방정식
$$y = x - 4 = -\frac{2}{3}x + 1$$
 의 해는 연립방정식
$$\begin{cases} y = x - 4 \\ y = -\frac{2}{3}x + 1 \end{cases}$$
 의 해이다.
$$\mathbf{E}, \text{ 연립방정식의 해는 두 직선의 교점의 좌표인 } (3, -1) \text{ 이다.}$$

2. 두 직선 3x+y=2 와 x+ay=9 의 교점의 좌표가 (-1,b) 일 때, a-b의 값은?

<u>1</u> –3 ② -1 ③ 1 ④ 2 ⑤ 3

3x + y = 2에 x = -1, y = b를 대입 -3 + b = 2, b = 5x + ay = 9에 x = -1, y = 5를 대입

-1 + 5a = 9, a = 2

그러므로 a=2, b=5이다.

 $\therefore a - b = -3$

해설

일차방정식 x-ay-2=0 과 3x-2y+5=0 의 그래프가 서로 평행일 3. 때, 상수 a 의 값을 구하면?

① $\frac{1}{3}$ ② $\frac{1}{2}$ ③ $\frac{2}{3}$ ④ $\frac{3}{2}$ ⑤ $\frac{5}{2}$

평행하면 기울기가 같으므로 $\frac{1}{3} = \frac{-a}{-2} \neq \frac{-2}{5} ,$ $\frac{1}{3} = \frac{a}{2} , a = \frac{2}{3}$

$$\frac{3}{3} = \frac{a}{2}, a =$$

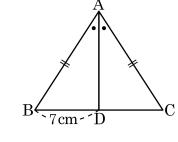
- 다음 그림에서 ∠x 의 크기를 구한 것은? **4.**
 - ① 80° 4 110°
- ② 90° ⑤ 120°
- 3 100°



$$\angle BAC = (180^{\circ} - 40^{\circ}) \div 2 = 70^{\circ}$$

 $\therefore \angle x = 180^{\circ} - 70^{\circ} = 110^{\circ}$

5. 다음 그림의 $\triangle ABC$ 에서 $\overline{AB}=\overline{AC},\ \angle BAD=\angle CAD$ 일 때, \overline{CD} 의 길이와 $\angle ADC$ 의 크기를 구하여라.



 $\underline{\mathrm{cm}}$

▶ 답:

 ▷ 정답: $\overline{CD} = 7 \underline{cm}$

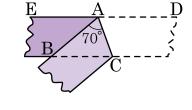
 ▷ 정답: ∠ADC = 90 _

답:

이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등분한다. · CD - BD - 7(cm) /ADC - 90°

 $\therefore \overline{CD} = \overline{BD} = 7(cm), \angle ADC = 90^{\circ}$

6. 폭이 일정한 종이테이프를 다음 그림과 같이 접었다. $\angle BAC = 70^\circ$ 일 때, ∠BAC 와 크기가 같은 각은?



① ∠ABC ④ ∠BAD

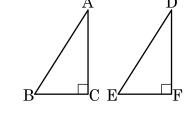
② ∠ACB ⑤ ∠EAD

③ ∠EAC

종이를 접었으므로 $\angle \mathrm{BAC} = \angle \mathrm{DAC} = 70\,^{\circ}$ 이다. $\angle \mathrm{DAC} =$

∠ACB (엇각)이다. 따라서 ∠BAC = ∠ACB 이다.

다음 그림의 두 직각삼각형 ABC, DEF 가 합동이 되는 경우를 보기 7. 에서 모두 찾아라.



 \bigcirc $\overline{BC} = \overline{EF}, \overline{AC} = \overline{DF}$

 \bigcirc $\angle A = \angle D, \overline{AC} = \overline{DF}$

 \bigcirc $\angle A = \angle D, \angle B = \angle E$

답:

답:

답:

답:

▷ 정답: つ

▷ 정답: □

▷ 정답 : □

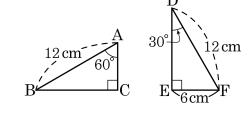
▷ 정답: ②

삼각형이 합동이 될 조건 SAS, ASA 직각삼각형이 합동이 될 조건 RHA, RHS

 \bigcirc $\overline{AB} = \overline{DE}, \ \overline{AC} = \overline{DF} \Rightarrow RHS 합동$ \bigcirc $\angle A = \angle D$, $\overline{AC} = \overline{DF} \implies ASA$ 합동

 \bigcirc $\overline{BC} = \overline{EF}, \ \overline{AC} = \overline{DF} \Rightarrow SAS$ 합동

8. 두 직각삼각형 ABC , DEF 가 다음 그림과 같을 때, \overline{AC} 의 길이를 구하여라.



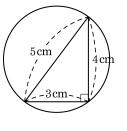
 ► 답:
 cm

 ▷ 정답:
 6 cm

직각삼각형의 빗변의 길이와 한 예각의 크기가 같으므로 두 삼

각형은 RHA 합동이다. 합동이므로 $\overline{\mathrm{AC}}=\overline{\mathrm{FE}}$ 가 된다. $\overline{\mathrm{AC}}=6\mathrm{cm}$

9. 다음 그림과 같이 직각삼각형 모양에 원 모양 의 테두리를 두르려고 한다. 테두리를 둘렀을 때, 원의 넓이를 구하여라.



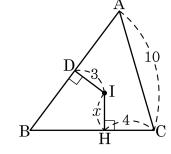
 $\underline{\mathrm{cm}^2}$ ightharpoonup 정답: $6.25\pi ext{cm}^2$

▶ 답:

직각삼각형이므로 빗변의 중심에 외심이 있다. 그러므로 원의

해설

반지름은 2.5 cm 이다. 따라서 원의 넓이는 $\pi(2.5\,\mathrm{cm})^2=6.25\pi(\,\mathrm{cm}^2)$ 이다. 10. 다음 그림에서 점 I가 ΔABC 의 내심일 때, x의 값을 구하여라.



 답:

 ▷ 정답:
 3

삼각형의 내심에서 세 변에 이르는 거리는 같으므로 $x=\overline{\mathrm{IH}}=3$

이다.

- 11. 민수는 삼각형 모양의 색종이를 잘라 최대한 큰 원을 만들려고 한다. 순서대로 기호를 써라.
 - © 점 I 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다.

⊙ 세 내각의 이등분선의 교점을 I 라고 한다.

- © 그린 원을 오린다.
- ② 세 내각의 이등분선을 긋는다.

▶ 답:

답:

▶ 답:

▶ 답:

▷ 정답: ②

▷ 정답: ⑤

▷ 정답 : □

▷ 정답: □

1. 세 내각의 이등분선을 긋는다. 2. 세 내각의 이등분선의 교점을 I 라고 한다.

- $3. \,\,$ 점 $I \,\,$ 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다.
- 4. 그린 원을 오린다.

- **12.** 좌표평면 위에서 두 직선 y = 2x 1, y = ax 4의 교점의 x좌표가 -3일 때, 상수 a의 값은?
 - ▶ 답:

▷ 정답: 1

V 01.

y = 2x - 1에 x = -3을 대입하면 y = -7y = ax - 4에 x = -3, y = -7을 대입하면 a = 1

- **13.** 두 직선 x + 3 = 0, 2y 4 = 0 의 교점을 지나고, 2x y + 3 = 0 에 평행한 직선의 방정식의 y 절편은?
 - ① 2

- ② 6 ③ 7 **④**8 ⑤ 9

x+3=0, 2y-4=0 의 교점은 (-3,2) 이고, y=2x+3 의

해설

기울기와 같으므로 구하는 직선의 방정식을 y = ax + b 라고 하면

y = 2x + b, 점 (-3, 2) 를 지나므로 2 = -6 + b

 $\therefore b = 8$

따라서, 구하는 y = 2x + 8 의 y 절편은 8 이다.

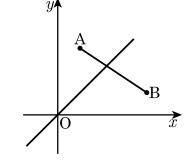
14. 두 직선 $\begin{cases} ax + 3y = 1 \\ 4x - by = 2 \end{cases}$ 의 해가 무수히 많을 때, a - b 의 값을 구하 여라.

①8 ② 4 ③ 0 ④ -8 ⑤ -4

해가 무수히 많을 때는 두 직선이 일치할 때이다.

ax + 3y = 1 의 양변에 2 를 곱한다. 2ax + 6y = 2를 4x - by = 2 와 비교한다. $\therefore a = 2, b = -6, a - b = 8$

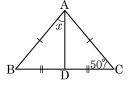
15. 일차함수 y = ax 의 그래프가 두 점 A(1, 3) , B(4, 1) 을 이은 선분과 만날 때, a 의 값의 범위는?



- ① $\frac{1}{2} \le a \le 2$ ② $\frac{1}{4} \le a \le 3$ ③ $1 \le a \le 2$ ④ $1 \le a \le 4$ ③ $2 \le a \le 4$

y = ax 에 (1,3), (4,1) 을 대입 $\frac{1}{4} \le a \le 3$

16. 다음 그림의 $\triangle ABC$ 에서 $\overline{AB} = \overline{AC}, \ \overline{BD} =$ $\overline{\mathrm{CD}}$ 일 때, $\angle x$ 의 크기는?



① 35°

②40° 3 45° 4 50°

⑤ 55°

해설 ΔABC 는 이등변삼각형이므로

 $\angle BAC = 180^{\circ} - 2 \times 50^{\circ} = 80^{\circ}$

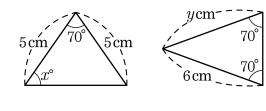
또 \overline{AD} 는 \overline{BC} 를 이등분하므로 \overline{AD} 는 $\angle BAC$ 를 이등분하고 \overline{BC}

와 수직 (이등변삼각형의 각의 이등분선의 성질)

따라서 $x = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$

17. 다음 그림에서 x + y가 속한 범위는?

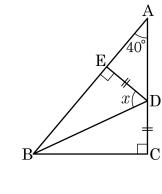
① 61 ~ 65



③ $71 \sim 75$

② 66 ~ 70

두 삼각형은 모두 이등변삼각형이므로 ∠x = 55°, y = 6(cm) ∴ x+y = 55+6=61 **18.** $\triangle ABC$ 에서 $\angle C=\angle E=90^\circ$, $\angle A=40^\circ$, $\overline{CD}=\overline{ED}$ 일 때, $\angle x$ 의 크기는?



① 45°

② 50°

③65°

4 70°

⑤ 75°

 \triangle BDE \equiv \triangle BDC(RHS합동) 이므로,

 $\angle \text{EBD} = \angle \text{CBD} = 25^{\circ}$, $\triangle \text{BDE}$ 에서 $\angle x = 65^{\circ}$

19. 다음은 $\angle XOY$ 의 이등분선 위의 한 점을 P 라 하고 P 에서 \overrightarrow{OX} , \overrightarrow{OY} 에 내린 수선의 발을 각각 A, B 라고 할 때, $\overline{\mathrm{PA}}=\overline{\mathrm{PB}}$ 임을 증명하는 과정이다. () 안에 들어갈 것으로 옳지 <u>않은</u> 것은?

[증명] $\triangle POA$ 와 $\triangle POB$ 에서 $\angle POA = (1) \cdot \cdots \cdot 1$ (②) 는 공통 · · · · · · □ $(3) = \angle OBP = 90^{\circ} \cdot \cdots \cdot \textcircled{E}$ \bigcirc , \bigcirc , \bigcirc 에 의해서 $\triangle POA \equiv \triangle POB$ (④) 합동 $\therefore (\textcircled{5}) = \overline{\mathrm{PB}}$

① ∠POB 4 RHS

 $\odot \overline{PA}$

② OP ③ ∠OAP

 $\triangle POA$ 와 $\triangle POB$ 에서 $\angle POA = (\ \angle POB\) \cdot \cdot \cdot \cdot \cdot \cdot \bigcirc$

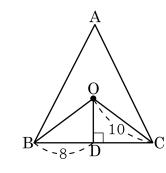
해설

(OP) 는 공통 · · · · · **L** $(\angle OAP) = \angle OBP = 90^{\circ} \cdot \cdot \cdot \cdot \cdot \bigcirc$ ①, ①, ©에 의해서 $\Delta {\rm POA} \equiv \Delta {\rm POB} \; (\ {\rm RHA} \)$ 합동

 $\therefore \ (\ \overline{\mathrm{PA}}\) = \overline{\mathrm{PB}}$

따라서 옳지 않은 것은 ④이다.

20. 다음 그림에서 점 O 는 \triangle ABC 의 외심이다. 점 O 에서 \overline{BC} 에 내린 수선의 발을 D 라 할 때, $\overline{\mathrm{OB}}$ 의 길이는?



① 6 ② 7

3 8

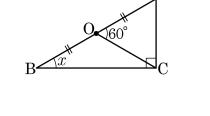
4 9

(5) 10

삼각형의 외심에서 세 꼭짓점에 이르는 거리가 같으므로 $\overline{ ext{OC}}$ =

OB 이다. 따라서 $\overline{OB} = 10$ 이다.

 ${f 21}$. 다음 그림과 같이 ${\it LC}=90^\circ$ 인 직각삼각형 ABC 의 빗변 AB 의 중점 을 O 라 하자. $\angle AOC = 60^{\circ}$ 일 때, $\angle x$ 의 크기는?



① 10° ② 20°

③ 30°

④ 40° ⑤ 50°

직각삼각형의 외심은 빗변의 중점이므로 $\overline{\mathrm{AO}} = \overline{\mathrm{CO}} = \overline{\mathrm{BO}}$

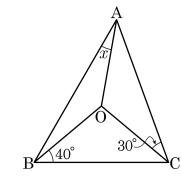
해설

 $\overline{\mathrm{BO}} = \overline{\mathrm{CO}}$ 이므로 $\Delta \mathrm{BOC}$ 는 이등변삼각형이다. 따라서 $\angle OCB = \angle B = x$ 삼각형의 한 외각의 크기는 두 내각의 합과 같으므로

 $x + x = 60^{\circ}$

 $\therefore x = 30^{\circ}$

22. 다음 그림에서 점 O는 \triangle ABC의 외심이다. \angle OBC = $40\,^{\circ}$, \angle ACO = 30°일 때, ∠x의 크기는?

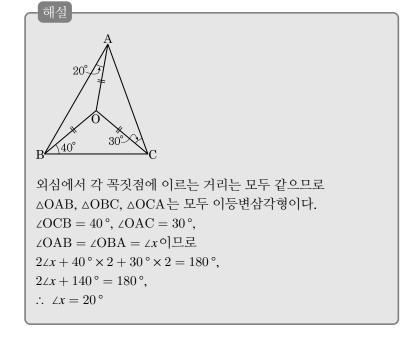


②20°

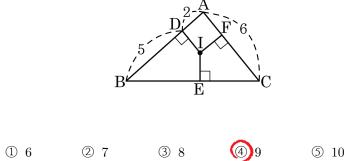
 325° 430°

⑤ 40°

① 15°



23. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이다. \overline{BC} 의 길이는?



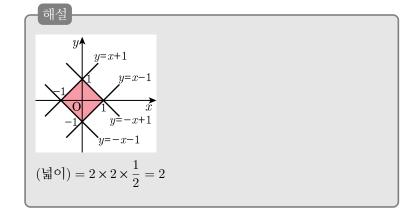
 $\overline{\mathrm{AD}} = \overline{\mathrm{AF}} = 2$ 이고, $\overline{\mathrm{BD}} = \overline{\mathrm{BE}} = 5$ 이다. $\overline{\mathrm{CE}} = \overline{\mathrm{AC}} - \overline{\mathrm{AF}} = 6 - 2 = 4$ 이므로

 $\overline{BC} = \overline{BE} + \overline{EC} = 9$

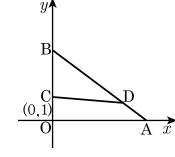
24. 4개의 직선 y = -x + 1, y = -x - 1, y = x - 1, y = x + 1 로 둘러싸인 도형의 넓이를 구하여라.

▶ 답:

▷ 정답: 2



25. 직선 AB 의 방정식은 3x+4y=12 이다. 점 D 의 x 좌표를 t , \Box OADC 의 넓이를 S 라 하자. $\triangle OAB$ 의 넓이가 $\square OADC$ 의 넓이의 2 배일 때, t 의 값을 구하여라.



▷ 정답: t = 3

▶ 답:

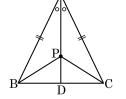
A(4,0) , B(0,3) 이므로

 $S = \triangle OAB - \triangle BCD = \frac{1}{2} \times 4 \times 3 - \frac{1}{2} \times 2 \times t = 6 - t$

2S=62(6-t)=6

 $\therefore t = 3$

26. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 $\angle A$ 의 이등분선과 \overline{BC} 와의 교점을 D라 하자. \overline{AD} 위의 한 점 P에 대하여 다음 중 옳은 것은?



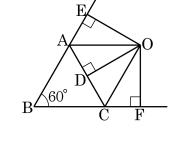
 $\overline{3} \overline{BP} = \overline{BD}$

 $\bigcirc \overline{AC} = \overline{BC}$

⑤ PD는 공통, ∠PDB = ∠PDC = 90°,

 $\overline{
m BD} = \overline{
m CD}$ 이므로 SAS 합동이다.

27. 다음 그림의 $\triangle ABC$ 에서 $\angle A$ 의 외각의 이등분선과 $\angle C$ 의 외각의 이등분선의 교점을 O 라고 하고 점 O 에서 \overline{BA} , \overline{BC} 의 연장선에 내린 수선의 발을 각각 E, F 라고 한다. $\overline{OE}=5cm$ 일 때, \overline{OF} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

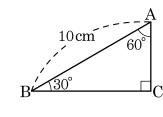
정답: 5 cm

▶ 답:

해설

 $\therefore \overline{OE} = \overline{OD} = \overline{OF} = 5 \, \text{cm}$

 $\triangle AOE \equiv \triangle AOD, \triangle COD \equiv \triangle COF(RHA합동)$



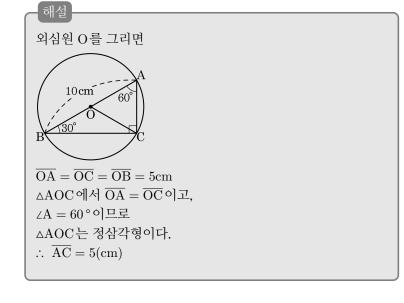
① 3cm

② 4cm

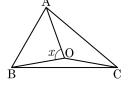
③5cm

④ 6cm

⑤ 7cm



29. 다음 그림에서 점 O는 $\triangle ABC$ 의 외심이고, $\angle A: \angle B: \angle C=4:3:2$ 일 때, $\angle x$ 의 크기를 구하여라.

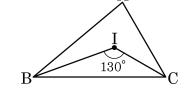


▶ 답:

▷ 정답: 80°

 $\angle C = 180^{\circ} \times \frac{2}{4+3+2} = 40^{\circ}$ 점 O가 ΔABC의 외심이므로 $\angle x = 2 \angle ACB = 2 \times 40^{\circ} = 80^{\circ}$

30. 다음 그림의 \triangle ABC의 내심을 I라 할 때, \angle BIC = $130\,^{\circ}$ 이면 \angle A = ()°이다. 빈칸을 채워 넣어라.



답: ▷ 정답: 80

31. 한 점에서 만나지 않는 세 직선 $y=x+2, y=\frac{1}{2}x-1, y=ax+b$ 를 그렸을 때, 세 직선으로 둘러싸인 삼각형이 생기지 않기 위한 a 의 값을 모두 구하여라.

답:답:

ᅵ

▷ 정답: 1

ightharpoonup 정답: $rac{1}{2}$

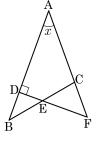
세 직선으로 둘러싸인 삼각형이 생기지 않기 위해서는 y = ax + b

의 그래프가 y=x+2 또는 $y=\frac{1}{2}x-1$ 의 그래프와 만나지 않아야 한다. 두 그래프가 만나지 않으려면 평행해야 하므로

i) y = ax + b 의 그래프가 y = x + 2 의 그래프와 평행할 때, a = 1 이다. ii) y = ax + b 의 그래프가 $y = \frac{1}{2}x - 1$ 의 그래프와 평행할 때,

 $a=rac{1}{2}$ 이다.

32. 다음 그림과 같이 $\overline{AC} = \overline{BC}$ 인 $\triangle ABC$ 에서 변 AC 연장선 위에 점 F 를 잡아 F 를 지나면서 \overline{AB} 에 수직인 직선이 변 AB , 변 BC와 만나는 점을 각각 D, E 이라 할 때, 다음 중 옳은 것은?



② $\overline{\text{CE}} = \overline{\text{EF}}$ 이다.

① $\angle ECF = \angle x$ 이다.

- ③ △CEF 는 이등변삼각형이다. ④ ∠DBE 의 크기는 ∠BED 와 항상 같다.
- ⑤ $\overline{\mathrm{AD}}$ 의 길이는 $\overline{\mathrm{DF}}$ 의 길이와 항상 같다.

① $\overline{AC} = \overline{BC}$ 이므로 $\triangle ABC$ 는 이등변삼각형이다.

 $\therefore \angle ABC = \angle x$ $\angle \mathrm{BCF} = 2 \angle x = \angle \mathrm{ECF}$

②, ③ $\triangle ADF$ 에서 $\angle AFD = 90$ ° $- \angle x$,

 $\angle \text{CEF} = 180^{\circ} - (2\angle x + 90^{\circ} - \angle x) = 90^{\circ} - \angle x$

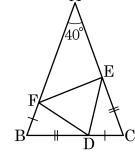
따라서 △CEF는 이등변삼각형이다. ④ $\triangle BDE$ 에서 $\angle DBE = \angle x$ 이고 $\angle BED = 90$ ° $- \angle x$ 이므로 $\angle x = 45$ °가 아닐 때에는 다르다.

그러므로 항상 같지는 않다. ⑤ $\triangle ADF$ 에서 $\angle AFD = 90^{\circ} - \angle x$ 이고 $\angle DAF = \angle x$ 이므로

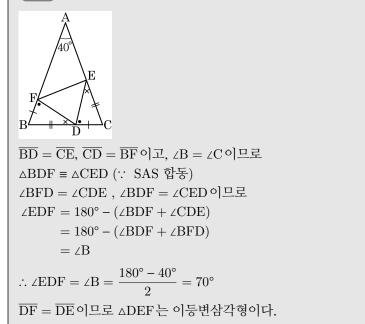
 $\angle x = 45$ °가 아닐 때에는 다르다. 그러므로 항상 이등변삼각형인 것은 아니므로 $\overline{\mathrm{AD}}$ 의 길이와

 $\overline{\mathrm{DF}}$ 의 길이는 항상 같지는 않다.

 ${f 33.}$ 다음 그림은 ${f \overline{AB}}={f \overline{AC}}$, $\angle{A}=40^{\circ}$ 인 이등변삼각형 ABC 의 변 위에 $\overline{BD} = \overline{CE}, \overline{CD} = \overline{BF}$ 가 되도록 점 D, E, F 를 잡은 것이다. 이 때, ∠DEF 의 크기를 구하여라.

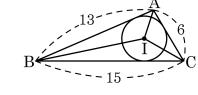


▶ 답: ➢ 정답: 55°



 $\therefore \angle DEF = \frac{1}{2}(180^{\circ} - 70^{\circ}) = 55^{\circ}$

34. 다음 그림에서 점 I 는 \triangle ABC 의 내심이고 $\overline{AB}=13$, $\overline{BC}=15$, $\overline{CA}=6$ 이다. \triangle AIB : \triangle BIC : \triangle CIA 를 a:b:c 라고 할 때, a+b-c 의 값을 구하여라.(단, a,b,c는 서로 소인 자연수)



▷ 정답: 22

답:

내접원의 반지름의 길이를 r 이라 하면

해설

 $\left(\triangle AIB 의 넓이\right) = \frac{1}{2} \times r \times 13 = \frac{13}{2}r$

 $(\triangle BIC 의 넓이) = \frac{1}{2} \times r \times 15 = \frac{15}{2}r$

(\triangle CIA 의 넓이) $= \frac{1}{2} \times r \times 6 = 3r$ 이다.

 \triangle AIB : \triangle BIC : \triangle CIA $=\frac{13}{2}r:\frac{15}{2}r:3r=13:15:6$ 이므로, $a=13,\,b=15,\,c=6$ 이다.

따라서 13 + 15 - 6 = 22 이다.

35. 직각삼각형 ABC 의 외접원의 반지름이 15, 내접원의 반지름이 6 일 때, 직각삼각형 ABC 의 넓이를 구하여라.

▶ 답:

▷ 정답: 216

