1.
$$a$$
 가 자연수이고 $\sqrt{\frac{18a}{5}}$ 가 정수일 때, a 의 값 중 가장 작은 값은?

$$\sqrt{\frac{18a}{5}} = \sqrt{\frac{2 \times 3^2 \times a}{5}}$$

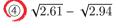
 $\therefore a = 2 \times 5 = 10$

2. 다음 표는 제곱근표의 일부분이다. 다음 중 주어진 표를 이용하여 그 값을 구할 수 없는 것은?

수	0	1	2	3
2.6	1.612	1.616	1.619	1.622
2.7	1.643	1.646	1.649	1.652
2.8	1.673	1.676	1.679	1.682
2.9	1.703	1.706	1.709	1.712

- ① $\sqrt{2.60}$
- ③ $\sqrt{2.91}$
- $\sqrt{2.83} + \sqrt{2.70}$

② $\sqrt{2.72}$



해설

④ 주어진 제곱근표로는 $\sqrt{2.94}$ 를 구할 수 없다.

3. 이차방정식 $x^2 + x + 3k = 0 (k \neq 0)$ 의 한 근이 k 일 때, k 의 값을 구하여라.

주어진 식에
$$k$$
 를 대입하면 $k^2 + k + 3k = 0$, $k^2 + 4k = 0$ $k(k + 4) = 0$

 $\therefore k = -4(k \neq 0)$

- **4.** 두 수 또는 두 식 $A \cdot B = 0$ 인 것을 가장 알맞게 표현한 것은?
 - ① A = 0 그리고 B = 0 ② $A \neq 0$ 그리고 B = 0
 - ③ A = 0 그리고 $B \neq 0$ ④A = 0 또는 B = 0

(5) $A \neq 0$ 그리고 $B \neq 0$

 $A \cdot B = 0$ 가 성립하려면 A, B 중 적어도 어느 하나는 0 이 되어야 한다. 이를 표현한 것은 (A)이다.

과정이다. 옳은 것은? $3x^2 - 6x - 21 = 0$

다음은 완전제곱식을 이용하여 $3x^2 - 6x - 21 = 0$ 의 해를 구하는

3
$$x^2 - 6x - 21 = 0$$

양변을 A 로 나누면 $x^2 - 2x - 7 = 0$
상수항을 우변으로 이항하면 $x^2 - 2x = 7$
양변에 B 를 더하면 $x^2 - 2x + B = 7 + B$
 $(x - C)^2 = D$
 $x - C = \pm \sqrt{D}$
 $\therefore x = C \pm E$

①
$$CD = 7$$

5.

③
$$2A - C = 4$$

⑤ $B - E = 1 - 2\sqrt{2}$

양변을
$$3$$
 으로 나누면 $x^2 - 2x - 7 = 0$
상수항을 우변으로 이항하면 $x^2 - 2x = 7$
양변에 1 를 더하면 $x^2 - 2x + 1 = 7 + 1$
 $(x - 1)^2 = 8$

$$x - 1 = \pm \sqrt{8}$$

$$\therefore x = 1 + 2\sqrt{2}$$

 $3x^2 - 6x - 21 = 0$

$$A = 3, B = 1, C = 1, D = 8, E = 2\sqrt{2}$$

6. 이차함수 $y = -x^2 - 2x + 1$ 에서 x 의 값이 증가함에 따라 y 의 값이 감소하는 x 의 값의 범위는?

(3) x < 1

①
$$x < -1$$
② $x > 1$

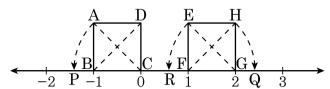
⑤
$$x > 0$$

② x > -1

해설 $y = -x^{2} - 2x + 1$ $= -(x^{2} + 2x + 1 - 1) + 1$ $= -(x + 1)^{2} + 2$ 대칭축이 x = -1 이고 위로 볼록한 포물선이다. 7. a < 0 일 때, 다음을 근호 없이 나타낸 것 중 옳은 것을 모두 고르면?

해설
①
$$a < 0$$
 일 때, $\sqrt{a^2} = -a$ 이다.
② $a < 0$ 일 때, $-(-a) = a$ 이다.

8. 다음 그림의 각 사각형은 한 변의 길이가 1 인 정사각형이다. P, Q, R 세 점의 좌표를 p, q, r 이라 할 때, p+q+r 의 값이 $a+b\sqrt{2}$ 였다. a+b 의 값을 구하여라.



$$\triangleright$$
 정답: $a+b=2$

$$p=-\sqrt{2}$$
, $q=1+\sqrt{2}$, $r=2-\sqrt{2}$ 이므로 $p+q+r=3-\sqrt{2}$ 이다. 따라서 $a=3$, $b=-1$ 이므로 $a+b=2$ 이다.

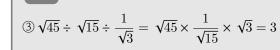
9. 다음 중 간단히 한 것의 값이
$$\sqrt{5}$$
 가 아닌 것은?

$$\sqrt[3]{\sqrt{45}} \div \sqrt{15} \div \frac{1}{\sqrt{3}}$$

$$\sqrt[3]{\sqrt{6}} \div \sqrt{5} \div \frac{\sqrt{6}}{5}$$

$$2 15 \div \sqrt{15} \div \sqrt{3}$$

$$4 \quad \frac{\sqrt{8}}{2} \div \frac{\sqrt{2}}{\sqrt{10}} \div \sqrt{2}$$



10. 곱셈 공식을 이용하여 (x-a)(3x+5) 를 전개하였을 때, x 의 계수가 17 이다. 이때 상수 *a* 의 값을 구하여라.

 $(x-a)(3x+5) = 3x^2 + (5-3a)x - 5a$

x 의 계수가 17 이므로 5 - 3a = 17

-3a = 12 $\therefore a = -4$ **11.** $x^2 - 2x = 1$ 일 때, $x^2 + \frac{1}{r^2}$ 의 값을 구하여라.

 $x^2 - 2x - 1 = 0$ 에서 양변을 x 로 나누면 $x - \frac{1}{r} = 2$,

$$\therefore x^2 + \frac{1}{x^2} = \left(x - \frac{1}{x}\right)^2 + 2 = 2^2 + 2 = 6$$

12.
$$x + a = 2$$
, $x - a = 7$ \supseteq \mathbb{H} , $x^3 - a^3 + ax^2 - a^2x = ?$

해설
$$(주어진 식) = x^3 + ax^2 - (a^3 + a^2x)$$

$$= x^2(x+a) - a^2(a+x)$$

$$= (x+a)(x^2 - a^2)$$

$$= (x+a)(x+a)(x-a)$$

$$= (x+a)^2(x-a)$$

$$= 2^2 \times 7 = 28$$

13. $x = 3 + \sqrt{3}$ 일 때, $2x^2 - 9x + 9$ 의 값을 구하여라.

$$ightharpoonup$$
 정답: $3\sqrt{3}+6$

$$2x^{2} - 9x + 9 = (2x - 3)(x - 3)$$

$$= (6 + 2\sqrt{3} - 3)(3 + \sqrt{3} - 3)$$

$$= (3 + 2\sqrt{3})\sqrt{3}$$

$$= 3\sqrt{3} + 6$$

14. 이차방정식 $(a-1)x^2 - (a^2+1)x + 2(a+1) = 0$ 의 한 근이 2 일 때, 다른 한 근을 구하여라. (단, $a \neq 1$)

$$(a-1)x^2 - (a^2+1)x + 2(a+1) = 0$$
의 한 근이 2 이므로 $(a-1) \times 4 - (a^2+1) \times 2 + 2(a+1) = 0$,

$$+1) \times 2 + 2($$

 $+2a + 2 - 0$

$$4a-4-2a^2-2+2a+2=0$$
,
 $a^2-3a+2=0$, $(a-2)(a-1)=0$,

$$a \neq 1$$
 이므로 $a = 2$,
 $x^2 - 5x + 6 = 0$, $(x - 2)(x - 3) = 0$,

15. 실수 a, b 에 대하여 a < 0, 0 < b < 1이다. $\sqrt{(-2a)^2} - \sqrt{(a-b)^2} + \sqrt{(1-b)^2}$ 을 간단히 하였을 때 a, b 의 계수와 상수항의 합은?

해설
$$a < 0, 0 < b < 1 \circ | \Box \exists z$$

$$a - b < 0, 1 - b > 0$$

$$\therefore \sqrt{(-2a)^2} - \sqrt{(a - b)^2} + \sqrt{(1 - b)^2}$$

$$= |-2a| - |a - b| + |1 - b|$$

$$= -2a + a - b + 1 - b$$

$$= -a - 2b + 1$$
따라서 구하는 값은 $-1 - 2 + 1 = -2 \circ | \Box$.

16. 한 원 위에 n개의 점을 잡아 n각형을 만들었다. 새로 만든 도형의 대각선의 총 개수가 35개 일 때, n의 값은?

해설 $\frac{n(n-3)}{2} = 35$ 이므로

 $n^{2} - 3n - 70 = 0$ (n+7)(n-10) = 0n = 10(: n > 0)

(5) 11

17. 이차함수
$$y = \frac{2}{3}x^2$$
 의 그래프를 꼭짓점의 좌표가 $(2, 0)$ 이 되도록 평행 이동하면 점 $(k, 6)$ 을 지난다. 이 때, 상수 k 의 값을 모두 구하여라.

이차함수 $y = \frac{2}{3}x^2$ 의 그래프를 꼭짓점의 좌표가 (2, 0) 이 되도록 편해이도하며 $y = \frac{2}{3}(x - 2)^2$ 이다. 전 (k - 6) 은 기나므로 대의하

평행이동하면 $y=\frac{2}{3}(x-2)^2$ 이다. 점 $(k,\ 6)$ 을 지나므로 대입하면 $6=\frac{2}{3}(k-2)^2,\ 9=(k-2)^2,\ k-2=\pm 3$ 따라서 $k=5,\ -1$ 이다.

18. 이차함수 $f(x) = ax^2 + bx + c$ 의 그래프는 x = 1 인 직선에 대해 대칭이고 x 절편은 3 이다. a+b=-2 를 만족할 때, 2a+b+c 의 값을 구하여라.

 $f(x) = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$ 의 그래프가 x = 1

해설

인 직선에 대해 대칭이면 꼭짓점의
$$x$$
 좌표가 1 이므로 $-\frac{b}{2a}=1$, $b=-2a\cdots$

$$2a \cdots \bigcirc$$

$$a+b=-2$$
 ··· \bigcirc
 ①, \bigcirc 에 의하여 $a=2,\ b=-4$

또한
$$x$$
 절편이 3 이므로 $9a + 3b + c = 0$

∴
$$c = -6$$

따라서 $2a + b + c = 4 - 4 - 6 = -6$ 이다.

19. $a^2x + 2ax - 8x = a + 4$ 를 만족하는 x 의 값이 없을 때, 상수 a 의 값을 구하여라.

$$a^2x + 2ax - 8x = a + 4$$

 $(a^2 + 2a - 8)x = a + 4$
해가 없을 때이므로
 $a^2 + 2a - 8 = 0, a + 4 \neq 0$ 이다.
 $a^2 + 2a - 8 = 0, (a + 4)(a - 2) = 0$

 $a + 4 \neq 0$ 이므로 a - 2 = 0, a = 2 이다.

20. 이차함수
$$f(x) = x^2 - 1$$
에 대하여 $f^1(x) = f(x)$, $f^{n+1} = f(f^n(x))$ 라 할 때, $f^{2009}(-1)$ 의 값을 구하여라.

$$\triangleright$$

답:

$$f^{1}(-1) = 0$$

$$f^{2}(-1) = f(f'(-1)) = f(0) = -1$$

$$f^{3}(-1) = f(f^{2}(-1)) = f(-1) = 0$$

$$f^{4}(-1) = f(f^{3}(-1)) = f(0) = -1$$