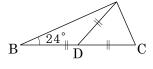
1. 다음 그림에서 ∠ABC = 24°이고, ĀD = BD = CD 일 때, ∠ACD 의 크기를 구하 여라.



 답:

 ▷ 정답:
 66°

스ABD는 이등변삼각형이므로

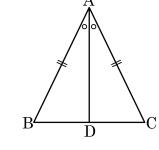
 $\angle BAD = \angle ABD = 24^{\circ}$

∠ADC 는 △ABD 의 외각이므로 ∠ADC = 24° + 24° = 48°

 $\angle ACD = \frac{1}{2}(180^{\circ} - 48^{\circ}) = 66^{\circ}$

△ADC는 이등변삼각형이므로

 ${f 2}$. 다음 그림과 같이 $\overline{
m AB}=\overline{
m AC}$ 인 이등변삼각형 ${
m ABC}$ 에서 ${\it \angle A}$ 의 이등 분선이 \overline{BC} 와 만나는 점 을 D라 할 때, 다음 중 옳지 <u>않은</u> 것을 모두 고르면 ?



① $\angle B = \angle C$

 $\textcircled{4} \ \overline{\mathrm{BD}} = \overline{\mathrm{CD}}$

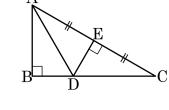
 \bigcirc $\angle ADB = \angle ADC$

$\triangle ABC는 \overline{AB} = \overline{AC}$ 인 이등변삼각형이므로

 $\angle \mathbf{B} = \angle \mathbf{C}$ 이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등분하므로

 $\overline{\mathrm{BD}} = \overline{\mathrm{CD}}, \, \overline{\mathrm{AD}} \bot \overline{\mathrm{BC}}, \, \angle \mathrm{ADB} = \angle \mathrm{ADC} = 90\,^{\circ}$

3. 다음 그림과 같이 $∠B = 90^\circ$ 인 ΔABC 에 \overline{AC} 의 수직이등분선과 \overline{BC} 의 교점을 D 라 하고 \overline{AD} 가 $\angle A$ 의 이등분선이 될 때, $\angle C$ 의 크기를 구하여라.



▷ 정답: 30 °

▶ 답:

해설

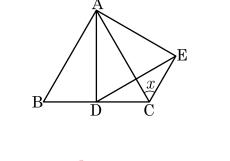
 $\triangle ADE \equiv \triangle CDE \text{ (SAS 합동)}$ △ABD ≡ △AED (RHA 합동)이므로

 $\angle C = \angle DAE = \angle DAB$ $\angle C = a$ 라 하면

 $\triangle ABC$ 에서 $2a + a + 90^{\circ} = 180^{\circ}$

 $\therefore \angle C = a = 30^{\circ}$

4. 다음 그림에서 $\triangle ABC$ 와 $\triangle ADE$ 가 정삼각형일 때, $\angle x$ 의 크기는?



① 50° ② 55°

③60°

4 65°

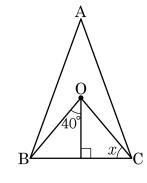
⑤ 70°

 $\triangle ABD$ 약 $\triangle ACE$ 에서 $\overline{AB}=\overline{AC},\overline{AD}=\overline{AE}$

해설

 $\angle BAD = 60^{\circ} - \angle DAC = \angle CAE$ 따라서 $\triangle ABD \equiv \triangle ACE (SAS합동)$ 이므로 $\angle x = ABD = 60^{\circ}$

5. 다음 그림에서 점 O 가 \triangle ABC 의 외심일 때, $\angle x$ 의 크기를 구하여라.



▷ 정답: 50°

▶ 답:

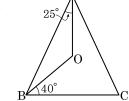
점 O 에서 선분 BC 로 내린 수선의 발을 점 D 라고 할 때,

△OBD ≡ △ODC 이므로, ∠BOD = ∠DOC = 40°이다.

프라서 $x 는 180^\circ - 90^\circ - 40^\circ = 50^\circ$ 이다.

49/1 x = 100 - 90 - 40

- 다음 그림에서 점 O 는 △ABC 의 외심이다.
 ∠OAB = 25°, ∠OBC = 40°일 때, ∠C 의 크 기는?
 ① 45°
 ② 50°
 ③ 55°
 - ① 45° ② 50° ④ 60° ⑤65°



OC 를 이으면

해설

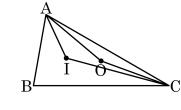
∠OAB + ∠OBC + ∠OCA = 90°이므로

 $25^{\circ} + 40^{\circ} + \angle OCA = 90^{\circ}, \angle OCA = 25^{\circ}$

 $\angle OBC = \angle OCB = 40^{\circ}$

 $\therefore \angle C = \angle OCB + \angle OCA = 65^{\circ}$

다음 그림에서 점 O 는 \triangle ABC 의 외심, 점 I 는 \triangle ABC 의 내심이다. \angle AOC + \angle AIC = 290° 일 때, \angle AIC 의 크기는? 7.



① 160°

② 120°

 3125°

4 130°

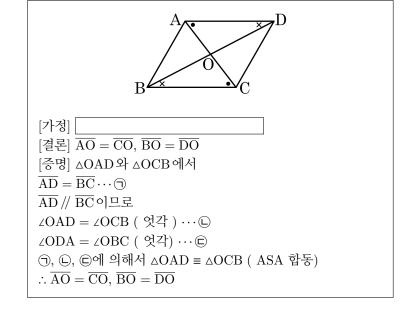
⑤ 140°

 $\triangle ABC$ 의 외심이 점 O 일 때, $\frac{1}{2}\angle AOC = \angle B$, $\triangle ABC$ 의 내심이 점 I 일 때, $\frac{1}{2}$ \angle B + 90° = \angle AIC 이므로

 $\angle AOC + \angle AIC = 2\angle B + \frac{1}{2}\angle B + 90^\circ = 290^\circ$ 일 때, $\angle B = 80^\circ$

이다. 따라서 $\angle {\rm AIC} = \frac{1}{2} \angle {\rm B} + 90^\circ = 40^\circ + 90^\circ = 130^\circ$ 이다.

8. 다음은 '평행사변형에서 두 대각선은 서로 다른 것을 이등분한다.' 를 증명한 것이다. 가정으로 옳은 것은?



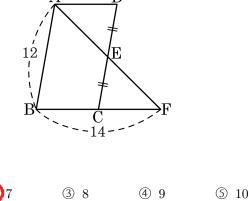
② $\square ABCD$ 에서 $\overline{AB} = \overline{DC}, \overline{AD} // \overline{BC}$

① $\Box ABCD$ 에서 $\overline{AB} = \overline{DC}$, $\overline{AD} = \overline{BC}$

- ③ $\square ABCD$ 에서 $\overline{AB} / / \overline{DC}$, $\overline{AD} = \overline{BC}$
- ④ □ABCD에서 ĀB // DC, ĀD // BC
- ⑤ ㅁABCD에서 AB // AD, CD // BC
- =11 24

 $\square ABCD$ 에서 \overline{AB} $//\overline{DC}$, \overline{AD} $//\overline{BC}$ 를 가정하여 \overline{AO} = \overline{CO} , \overline{BO} = \overline{DO} 를 증명하는 과정이다.

다음 그림과 같은 평행사변형 ABCD 에서 $\operatorname{\overline{CD}}$ 의 중점을 E , $\operatorname{\overline{AE}}$ 의 9. 연장선과 \overline{BC} 의 연장선의 교점을 F 라 할 때, \overline{AD} 의 길이는?



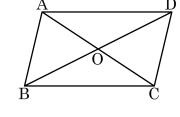
① 6

3 8

 $\triangle ADE \equiv \triangle FCE(SAS)$ 이므로 $\overline{AD} = \overline{FC}$

 $\square ABCD$ 가 평행사변형이므로 $\overline{AD} = \overline{BC}$ 따라서 $\overline{BC} = \overline{FC} = \overline{AD}$ $2 \times \overline{\mathrm{BC}} = 14$ 에서 $\overline{\mathrm{BC}} = 7$ 이므로 $\overline{\mathrm{AD}} = 7$ 이다.

10. 다음은 □ABCD 가 평행사변형일 때, 두 대각선은 서로 다른 것을 이등분함을 증명하는 과정이다. ¬~□ 중 알맞지 <u>않은</u> 것을 골라라.



가정: □ ABCD 에서 $\overline{AB} = \overline{DC}$, $\overline{AD} = \overline{BC}$ 결론: $\overline{AO} = \overline{CO}$, $\overline{BO} = \overline{DO}$ 증명: △ABO 와 △CDO 에서 \overline{AB} // \overline{DC} 이므로 ∠BAO=(⑤∠DCO) (엇각) ∠ABO = ∠CDO (엇각) $\overline{AB} = (\bigcirc \overline{CD})$ ∴ △ABO ≡ △CDO ($\bigcirc \overline{SSS}$ 합동) ∴ $\overline{AO} = (\bigcirc \overline{CO})$, ($\bigcirc \overline{BO} = \overline{DO}$)

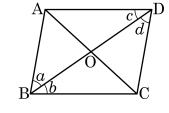
▷ 정답: □

▶ 답:

해설

한 변의 길이와 그 양 끝 각의 크기가 같은 삼각형은 ASA 합동이다.

11. 다음 중 평행사변형이 되는 조건이 <u>아닌</u> 것은?



② $\angle a = \angle d$, $\angle b = \angle c$

① $\angle A = \angle C$, $\angle B = \angle D$

- ③ $\angle A + \angle B = 180^{\circ}, \ \angle B + \angle C = 180^{\circ}$
- $4 2B + 2D = 180^{\circ}$

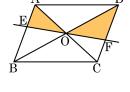
① $\angle A = \angle C, \angle B = \angle D$: 두 쌍의 대각의 크기가 각각 같은 사각 형은 평행사변형이다.

해설

- ② ∠a = ∠d, ∠b = ∠c : 엇각이 같은 두 직선은 서로 평행하다. ③ ∠A + ∠B = 180° : 동측내각의 합이 180° 인 사각형은 평행사
- 변형이다. ⑤ $\angle a \angle c = \angle d \angle b$, $\angle A = \angle C$: 두 쌍의 대각의 크기가 각각
- 같은 사각형은 평행사변형이다.

12. 다음 그림과 같이 넓이가 $40 \, \mathrm{cm}^2$ 인 평행사변형 ABCD에서 두 대각선의 교점 O를 지나는 직 선과 \overline{AB} , \overline{CD} 와의 교점을 각각 E, F라 할 때, 색칠한 두 삼각형의 넓이의 합을 구하여라.

 $\underline{\mathrm{cm}^2}$



▷ 정답: 10 cm²

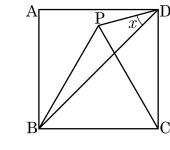
답:

 $\triangle \mathrm{OAE} + \triangle \mathrm{ODF}$

 $= \triangle \mathrm{OAE} + \triangle \mathrm{OBE}$

 $= \frac{1}{4} \square ABCD \ (\because \triangle OEB \equiv \triangle OFD)$ $= \frac{1}{4} \times 40 = 10 \ (cm^2)$

13. 다음 그림에서 $\square ABCD$ 는 정사각형이고, \triangle PBC 는 정삼각형일 때, $\angle x = (\)$ ° 이다. () 안에 들어갈 알맞은 수를 구하여라.



① 10° ② 15° ③ 20° ④ 25°

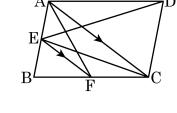
 $\angle CDB = 45^{\circ}$,

 $\angle PCD = 30^{\circ}$ 이고 $\overline{PC} = \overline{DC}$ 이므로

해설

 $\angle \text{CDP} = 75^{\circ}$, $\therefore \angle x = 75^{\circ} - 45^{\circ} = 30^{\circ}$

14. 다음 그림의 평행사변형 ABCD에서 \overline{AC} // \overline{EF} 이고 $\Delta AED=100 \mathrm{cm}^2$ 일 때, ΔACF의 넓이를 구하여라. (단, 단위는 생략한다.)

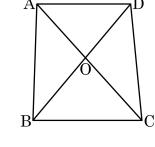


▶ 답: ▷ 정답: 100

 $\overline{
m AB}\,/\!/\,\overline{
m DC}$ 이므로 밑변과 높이가 같아 $\Delta
m AED = \Delta ACE$ 이고,

 $\overline{
m AC}\,/\!/\,\overline{
m EF}$ 이므로 밑변과 높이가 같아 $\Delta {
m ACF} = \Delta {
m ACE}$ $\therefore \triangle ACF = 100(cm^2)$

15. 다음 그림은 $\overline{\rm AD}$ $//\overline{\rm BC}$ 인 사다리꼴이다. $\Delta {\rm ACD}=36{\rm cm}^2,~\Delta {\rm ABO}=20{\rm cm}^2$ 일 때, $\Delta {\rm AOD}$ 의 넓이를 구하여라.



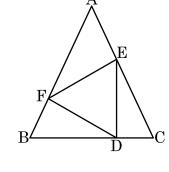
 $\underline{\mathrm{cm}^2}$

 ▷ 정답:
 16 cm²

▶ 답:

 $\overline{
m AD}$ $/\!/ \, \overline{
m BC}$ 이므로 $\triangle ABD = \triangle ACD$ 이고, $\triangle AOD$ 는 공통이므로 $\triangle ABO = \triangle DCO$ 따라서 $\triangle AOD = 36 - 20 = 16 cm^2$

16. 다음과 같이 $\angle B = \angle C$ 인 삼각형 ABC 에 정삼각형 DEF 가 내접해 있다. $\angle AFE = 35^{\circ}$, $\angle BDF = 30^{\circ}$ 일 때, $\angle DEC$ 의 크기를 구하여라.



➢ 정답 : 25 º

해설

▶ 답:

$\angle B = \angle C = \angle a$ 라 하면 삼각형의 두 내각의 크기의 합은 다른 한

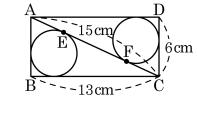
각의 외각의 크기와 같으므로 $\triangle \mathrm{BDF}$ 에서 $\angle a + 30\,^\circ = 35\,^\circ + 60\,^\circ$ \therefore $\angle a = 65\,^\circ$

△CDE 에서

 $\angle a + \angle DEC = 30^{\circ} + 60^{\circ}, 65^{\circ} + \angle DEC = 90^{\circ}$

 $\therefore \angle DEC = 25^{\circ}$

17. 다음 그림과 같은 직사각형 ABCD 에서 두 원은 각각 \triangle ABC, \triangle ACD 의 내접원이다. 두 접점 E, F 사이의 거리는 ?



 \bigcirc 7cm

③ 9cm

④ 10cm

⑤ 11cm

 $\overline{\mathrm{AE}}$ 를 x 라 하면 (15-x) + (6-x) = 13 : x = 4(cm)

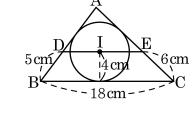
해설

 $\overline{AE} = \overline{CF} = 4(cm)$ 이므로

 $\therefore \overline{EF} = 15 - (4 + 4) = 7(cm)$

 \bigcirc 8cm

18. 점 I 는 \triangle ABC 의 내접원의 중심이고 반지름이 4cm 이다. 점 I 를 지나 밑변 BC 의 평행한 직선 DE 를 그을 때, □DBCE 의 넓이를 구하여라.



 $\underline{\rm cm^2}$

▷ 정답: 58cm²

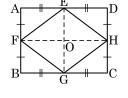
▶ 답:

점 I 가 삼각형의 내심이고 $\overline{\rm DE}//\overline{\rm BC}$ 일 때, $\overline{\rm DE}=\overline{\rm DI}+\overline{\rm EI}=$

 $\overline{\rm DB} + \overline{\rm EC}$ 따라서 $\overline{\mathrm{DE}} = 5 + 6 = 11 \mathrm{(cm)}$ 이다. 따라서 사다리꼴 DBCE 의 넓이는 $(11+18) \times 4 \times \frac{1}{2} = 58 ($ cm $^2)$

이다.

19. 다음 그림은 직사각형 ABCD 의 각 변의 중점 을 연결하여 □EFGH 를 만들었다. 직사각형 ABCD 에서 $\overline{AB} = 6 \,\mathrm{cm}$, $\overline{AD} = 8 \,\mathrm{cm}$ 이고, $\overline{\mathrm{EG}}$ 와 $\overline{\mathrm{FH}}$ 의 교점을 O 라고 할 때, $\Delta\mathrm{EFO}$ 의 넓이를 구하여라.



ightharpoonup 정답: $6 \underline{
m cm}^2$

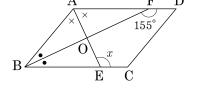
▶ 답:

 $\overline{\mathrm{AB}}=6\,\mathrm{cm}$, $\overline{\mathrm{AD}}=8\mathrm{cm}$ 이므로 직사각형 ABCD 의 넓이는

 $6 \times 8 = 48 (\text{cm}^2)$ 이다. 직사각형의 각 변의 중점을 연결하면 마름모가 되고, 넓이는 $\frac{1}{2}\times 48=24 (\mathrm{cm}^2)$ 이다. 따라서 Δ EFO 의 넓이는 $\frac{1}{4} \times 24 = 6 (\mathrm{cm}^2)$ 이다.

 $\underline{\mathrm{cm}^2}$

20. 다음 그림과 같은 평행사변형 ABCD에서 ∠A, ∠B의 이등분선의 교점을 O라 하자 ∠BFD = 155° 일 때, ∠x의 크기를 구하여라.



▶ 답:

➢ 정답: 115°

AE에 의하여 이등분되는

 $\angle A$ 를 $\angle DAE = \angle BAE = a$ 라 하고 \overline{BF} 에 의하여 이등분되는

∠B를 ∠ABF = ∠EBF = b라 하면

평행사변형에서 이웃하는 각의 크기의 합이 180°이므로

 $2a + 2b = 180^{\circ}$

a+b=90°

a + b = 90 °이므로 a + 25 ° = 90 ° ∴ a = 65 °

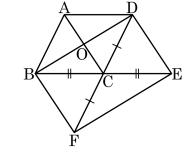
△ABE에서 두 내각의 합은 이웃하지 않은 외각의 크기와 같으

 $\angle AFB = 180\,^{\circ} - 155\,^{\circ} = 25\,^{\circ}$ 이고 $\overline{AD}\,/\!/\,\overline{BC}$ 이므로 엇각의 성질

므로 $a + 2b = \angle x$ $\therefore \ \angle x = 65^{\circ} + 50^{\circ} = 115^{\circ}$

에 의하여 $b=25\,^\circ$

 ${f 21}$. 평행사변형 ABCD 의 두 변 BC, DC 의 연장선 위에 $\overline{
m BC}=\overline{
m CE}$, $\overline{DC} = \overline{CF}$ 가 되도록 두 점 E, F 를 잡을 때, $\Box ABCD$ 를 제외한 사각 형이 평행사변형이 되는 조건은 보기에서 모두 몇 개인가?



⊙ 두 쌍의 대변이 각각 평행하다.

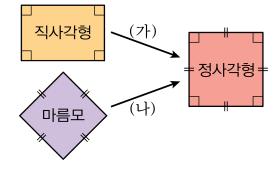
보기

- ① 두 쌍의 대변의 길이가 각각 같다.
- € 두 쌍의 대각의 크기가 각각 같다.
- ② 두 대각선이 서로 다른 것을 이등분한다.
- ◎ 한 쌍의 대변이 평행하고 그 길이가 같다.
- ① 1개 ②2 개

③ 3 개 ④ 4 개 ⑤ 5 개

평행사변형이 되는 조건은 □ABFC,□ACED가 평행사변형이되 는 조건 @과 □BFED가 평행사변형이 되는 조건 @로 2개이다.

22. 다음 그림에서 정사각형이 되기 위해 추가되어야 하는 (가), (나)의 조건으로 알맞은 것을 고르면?



(나) 두 대각선이 서로 수직이다. ② (가) 두 대각선의 길이가 같다.

① (가) 이웃하는 두 각의 크기가 같다.

- (나) 한 내각의 크기가 90°이다. ③ (가) 두 대각선이 서로 수직이다.
- (나) 이웃하는 두 변의 길이가 같다. ④ (가) 두 대각선의 길이가 같다.
- (나) 이웃하는 두 변의 길이가 같다.
- ⑤ (가) 두 대각선이 서로 수직이다. (나) 이웃하는 두 각의 크기가 같다.

여러 가지 사각형의 대각선의 성질

해설

(1) 평행사변형의 두 대각선은 서로 다른 것을 이등분한다.

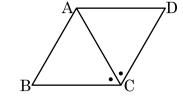
이등분한다.

- 분한다.
- (3) 마름모의 대각선은 서로 다른 것을 수직이등분한다. (4) 정사각형의 두 대각선은 길이가 같고, 서로 다른 것을 수직

(2) 직사각형의 두 대각선은 길이가 같고, 서로 다른 것을 이등

- (5) 등변사다리꼴의 두 대각선은 길이가 같다.

23. 다음 그림과 같은 평행사변형 ABCD에서 \angle ACB = \angle ACD 이고, $\overline{\rm AD} = 4 {\rm cm}$ 일 때, \Box ABCD의 둘레를 구하면?



314cm

④ 15cm

(5) 16cm

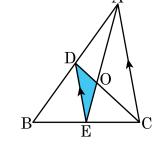
 $\overline{\mathrm{AD}} = 4\mathrm{cm}$ 이므로 둘레는 $4 \times 4 = 16(\mathrm{cm})$ 이다.

 $\angle ACB = \angle ACD$ 이므로 $\Box ABCD$ 는 마름모이다.

② 13cm

해설

24. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AC} /\!/ \overline{DE}$ 이고, $\triangle BCD$ = $90\mathrm{cm}^2,\ \Delta\mathrm{OEC}\,=\,25\mathrm{cm}^2\,$ 이다. $\overline{\mathrm{DE}}$ 가 $\Delta\mathrm{ABE}$ 의 넓이를 이등분할 때, △DEO의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$

▷ 정답: 20cm²

▶ 답:

 $\overline{
m DE}$ 가 $\triangle ABE$ 의 넓이를 이등분하므로 $\overline{
m BD} = \overline{
m DA}$ $\overline{\mathrm{DE}} /\!/ \overline{\mathrm{AC}}$ 이므로 $\overline{\mathrm{BD}} : \overline{\mathrm{DA}} = \overline{\mathrm{BE}} : \overline{\mathrm{EC}}$

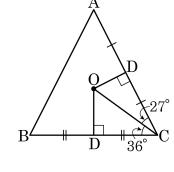
해설

따라서 $\overline{BE} = \overline{EC}$ $\Delta \mathrm{DBE}$ 와 $\Delta \mathrm{DEC}$ 에서 밑변과 높이가 같으므로

 $\Delta DBE = \Delta DEC = \frac{90}{2} = 45 (cm^2)$

 $\therefore \triangle DEO = \triangle DEC - \triangle OEC = 45 - 25$ $= 20(cm^2)$

25. 다음 그림에서 점 O 가 \overline{AC} , \overline{BC} 의 수직이등분선의 교점일 때, $\angle A$ 의 크기를 구하여라.



▷ 정답: 54°

▶ 답:

