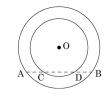
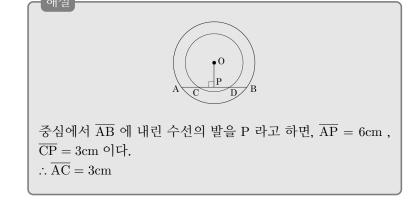

1. 다음과 같이 반지름이 10 인 원의 중심 O 에서 현 AB 에 수선을 내렸을 때, *x* 의 값은?

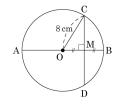

① 6 ② 7 ③ 8 ④ 9 ⑤ 10

반지름의 길이가 10 이므로 $\overline{\mathrm{OB}} = 10$ 이다.

해설

원의 중심 O 에서 내린 수선의 발을 P 라 하면, 원의 중심에서 현에 내린 수선은 그 현을 이등분하므로 $\overline{\mathrm{BP}}=8$ 이다. \triangle OBP 는 직각삼각형이므로 $x=\sqrt{10^2-8^2}=6$ 이다.

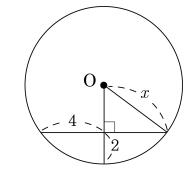

2. 다음 그림과 같은 원 모양의 트랙이 있다. $\overline{AB}=12\mathrm{cm},\ \overline{CD}=6\mathrm{cm}$ 일 때, \overline{AC} 의 길이는?


- ① 1cm
- ② 1.5cm
- ③ 2cm

④ 2.5cm

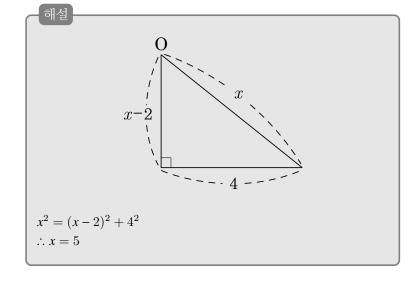
⑤3cm

3. 다음 그림에서 \overline{AB} 는 원 O 의 지름이고, $\overline{AB}\bot\overline{CD}$ 이다. $\overline{OM}=\overline{MB}$ 이고, 반지름이 $8\mathrm{cm}$ 일 때, \overline{CD} 의 길이는?

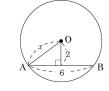

- 10cm
 12cm
- ② $10\sqrt{2}$ cm ③ $12\sqrt{3}$ cm
- ③8√3cm
- '

 $\overline{\mathrm{OM}} = \overline{\mathrm{MB}} = 4\mathrm{cm}$

해설


 \triangle OCM 에서 $\overline{\text{CM}} = 4\sqrt{3}\text{cm}$ $\therefore \overline{\text{CD}} = 2 \times 4\sqrt{3} = 8\sqrt{3} \text{(cm)}$

4. 다음 그림에서 x 의 값을 구하여라.

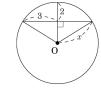


답:

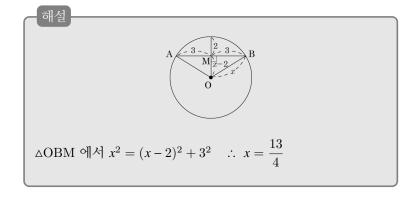
➢ 정답: 5

5. 다음 그림에서 x 의 길이를 구하여라.

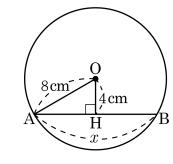
■ 답:


▷ 정답: √13

점 O 에서 내린 수선의 발을 H 라 하면

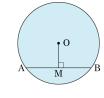

 $\overline{AH} = \overline{BH} = 3$ $x^2 = 3^2 + 2^2 \quad \therefore \quad x = \sqrt{13}$

. 0 12


6. 다음 그림의 θO 에서 x의 값은?

- ① $\frac{11}{4}$ ② $\frac{13}{4}$ ③ $\frac{15}{4}$ ④ $\frac{17}{4}$ ⑤ $\frac{19}{4}$

7. 다음 그림과 같이 반지름의 길이가 $8 \, \mathrm{cm}$ 인 원 O 의 중심에서 현 AB 에 내린 수선의 길이가 $4 \, \mathrm{cm}$ 일 때, x의 길이는?

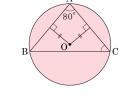

- ① $4\sqrt{3}$ cm ④ $7\sqrt{3}$ cm
- $3 6\sqrt{3} \text{ cm}$

해설

 $\overline{AH} = \sqrt{8^2 - 4^2} = \sqrt{64 - 16}$

 $= \sqrt{48} = 4\sqrt{3} \text{ (cm)} 이므로$ $x = \overline{AB} = 2 \cdot \overline{AH} = 8\sqrt{3} \text{ (cm)}$

다음 그림의 원 O 에서 $\overline{\mathrm{OM}}\bot\overline{\mathrm{AB}}$ 이고, $\overline{\mathrm{AB}}=8\mathrm{cm}$, $\overline{\mathrm{OM}}=3\mathrm{cm}$ 일 8. 때, 이 원의 반지름의 길이는?

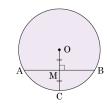

- ① $2\sqrt{7}$ cm 4 5cm
- ② $5\sqrt{2}$ cm
- ③ 10cm

△AMO는 직각삼각형이므로 $\overline{\mathrm{OA}}=r$ 라 하면 $r=\sqrt{4^2+3^2}=\sqrt{25}=5(\mathrm{cm})$

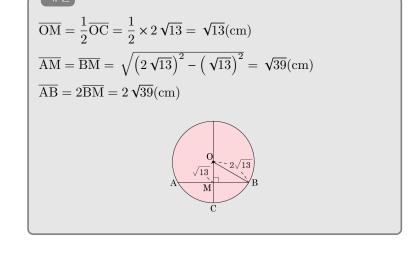
 $\overline{AB} = 8 \mathrm{cm}$ 이면 $\overline{AM} = 4 \mathrm{cm}$ 이고

9. 다음 그림에서 $\angle A=80^\circ$ 일 때, $\angle C$ 의 크기를 구하여라.

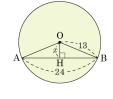
▷ 정답: 50 °


▶ 답:

원의 중심에서 현까지의 거리가 같으므로


해설

 $\overline{\rm AB}=\overline{\rm AC}$, $\triangle {\rm ABC}$ 는 $\overline{\rm AB}=\overline{\rm AC}$ 인 이등변삼각형 이므로 $\angle {\rm C}=$ $(180^{\circ}-80^{\circ})\div 2=50^{\circ}$


10. 반지름의 길이가 $2\sqrt{13}$ cm 인 원 O에서 $\overline{OM} \bot \overline{AB}$, $\overline{OM} = \overline{MC}$ 일 때, \overline{AB} 의 길이는?

- ① $3\sqrt{13}$ cm
- ② $\sqrt{39}$ cm ③ $2\sqrt{93}$ cm
- $\boxed{3}2\sqrt{39}cm$
- $4 2\sqrt{13}cm$
- © 2 **V**00cm

11. 다음 그림의 θ O 에서 x 의 값은?

③5cm

④ 6cm

⑤ 7cm

② 4cm ① 3cm

 $\triangle OBH$ 에서 $\overline{HB} = \frac{1}{2}\overline{AB} = \frac{1}{2} \times 24 = 12$ $x = \sqrt{\overline{OB}^2 - \overline{HB}^2} = \sqrt{13^2 - 12^2} = 5 \text{ (cm)}$

- 12. 원의 중심에서 $3 \, \mathrm{cm}$ 떨어져 있는 현의 길이가 $8 \mathrm{cm}$ 일 때, 이 원의 넓이는?
 - ② $28\pi \,\mathrm{cm}^2$ ③ $32\pi \,\mathrm{cm}^2$ $25\pi\,\mathrm{cm}^2$ (4) $36\pi \,\mathrm{cm}^2$ (5) $38\pi \,\mathrm{cm}^2$

해설

그림에서 $\overline{\mathrm{AH}}$ = 4(cm) 이므로 r = $\sqrt{3^2 + 4^2} = 5 \text{(cm)}$ 따라서, 원 O 의 넓이는 $\pi \times 5^2 =$ O $25\pi (\,\mathrm{cm}^2)$ 3 cm

13. 다음 한 원과 직선에 대한 설명 중 잘못된 것은?

- ① 크기가 같은 두 중심각에 대한 현의 길이와 호의 길이는 각각 같다.
- ② 중심에서 현에 내린 수선은 그 현을 이등분한다.
- ③ 길이가 같은 현은 원의 중심에서 같은 거리에 있다.
- ④ 중심으로부터 같은 거리에 있는 현의 길이는 같다. ⑤ 현의 이등분선은 그 원의 중심을 지난다.

이등분선이 그 현의 수직이등분선일 때, 원의 중심을 지날 수

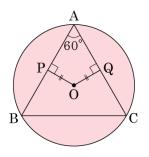
해설

있다.

- 14. 다음 한 원과 직선에 대한 설명 중 잘못된 것은?
 - 원의 중심에서 현에 내린 수선은 그 현을 수직이등분 한다.
 같은 길이의 현은 원의 중심으로부터 같은 거리에 있다.
 - ③ 원의 중심으로부터 같은 거리에 있는 현은 그 길이가 같다.
 - ④ 현의 길이는 부채꼴의 중심각의 크기에 비례한다.
 - ⑤ 현의 수직이등분선은 원의 중심을 지난다.

현의 길이는 중심각의 크기에 비례하지 않는다.

15. 다음 그림에서 $\overline{\rm OM}=\overline{\rm ON}$, $\angle {\rm A}=50\,^{\circ}$ 일 때, $\angle {\rm B}$ 의 크기는?

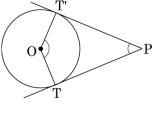

① 55°

②65° 3 70° 4 75° 5 85°

해설

중심에서 현에 이르는 거리가 같으므로 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ $\Delta\mathrm{ABC}$ 가 이등변삼각형 $\therefore \angle B = (180\,^{\circ} - 50\,^{\circ}) \times \frac{1}{2} = 65\,^{\circ}$

16. 다음 그림의 원 O 에서 $\overline{OP} \bot \overline{AB}$, $\overline{OQ} \bot \overline{AC}$ 이고, $\overline{AB} = 8\sqrt{3}$ 일 때, 이 원의 반지름의 길이를 구하여라.



▷ 정답: 8

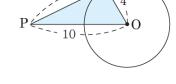
▶ 답:

 $\angle OAP = 30^{\circ}, \ \overline{AP} = 4\sqrt{3} \ \circ$] 므로 $\overline{AP} : \overline{AO} = \sqrt{3} : 2 = 4\sqrt{3} : \overline{AO} \quad \therefore \overline{AO} = 8$

17. 다음 그림과 같이 원 밖의 한 점 P 에서 원 O 에 접선 PT, = PT' 을 그었을 때, ∠TOT' + ∠TPT' 의 크기를 구하여 라.

> 정답: 180<u>°</u>

V 0_ 1 203_

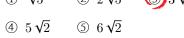

▶ 답:

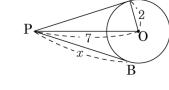
접선의 성질에 의해 ∠PT'O = ∠PTO = 90°

해설

사각형 PT′OT 의 내각의 합은 360°이다. ∴ ∠T′OT + ∠T′PT = 180°

- 18. 다음 그림에서 색칠한 부분의 넓이 는?(단, \overline{PA} 는 원 O 의 접선)
- ① $5\sqrt{3}$ ② $3\sqrt{13}$
 - $\boxed{3}4\sqrt{21}$
- $4 \sqrt{23}$
- ⑤ $9\sqrt{3}$

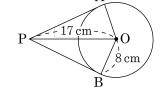

해설


 $\angle A = 90^{\circ}$ 이므로 $10^2 = x^2 + 4^2, \quad x = 2\sqrt{21}$

따라서 $\triangle PAO = \frac{1}{2} \times 2\sqrt{21} \times 4 = 4\sqrt{21}$ 이다.

19. 다음 그림에서 \overline{PA} , \overline{PB} 가 원 O 의 접 선일 때, x 의 길이는?

 $3\sqrt{5}$ ② $2\sqrt{5}$ ① $\sqrt{5}$



 $\overline{\mathrm{AP}} = \overline{\mathrm{BP}} = x$

 $7^2 = \overline{AP^2} + 2^2$ $\therefore x = 3\sqrt{5}$

 20.
 다음 그림에서 PA , PB 는 원 O 의 접 선이고, OP = 17 cm, OA = 8 cm일 때 사각형 PAOB의 둘레의 길이를 구하여 라.

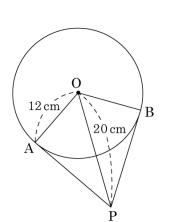
 답:

 ▷ 정답:
 46 cm

<u>cm</u>

 $\overline{PB} = \sqrt{17^2 - 8^2}$ $= \sqrt{289 - 64}$

해설


 $= \sqrt{289 - 64}$ $= \sqrt{225}$

= 15

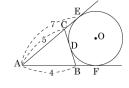
= 15

 $\therefore \overline{\mathrm{PA}} + \overline{\mathrm{PB}} + \overline{\mathrm{AO}} + \overline{\mathrm{BO}} = 46 (\mathrm{\,cm})$

21. 다음 그림과 같이 원 O 가 PA, PB 에 접한다고 할 때, □PAOB 의 둘레의 길이는?

- ① 53 cm
- ② 54 cm ⑤ 57 cm
- ③ 55 cm

4 56 cm

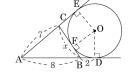

 $\overline{AP} = \sqrt{20^2 - 12^2} = \sqrt{256} = 16 \text{ (cm)}$

해설

 $\overline{AP} = \overline{BP}$ 이므로 16 + 16 + 12 + 12 = 56(cm)

22. 다음 그림에서 원 O 는 $\triangle ABC$ 의 방접원이고 점 D, E, F 는 원 O 의 접점이다. $\overline{AB}=4, \overline{AC}=5, \overline{AE}=7$ 일 때, \overline{BC} 의 길이를 구하여라.

AB = 4, AC = 5, AE = 7 할 때, BC 의 설익을 구하였다.

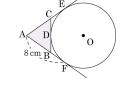

 답:

 ▷ 정답:
 5

해설

 $\overline{BC} = \overline{BD} + \overline{CD}$ $\overline{BC} = \overline{BF} + \overline{CE} = 3 + 2 = 5$

23. 다음 그림의 원 O에서 x 의 길이를 구하여라.


➢ 정답: 5

해설

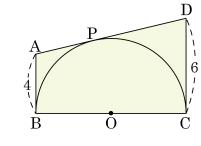
▶ 답:

 $\overline{\mathrm{BF}} = \overline{\mathrm{BD}} = 2$ 이므로 $\overline{\mathrm{CE}} = \overline{\mathrm{CF}} = x - 2$ $\overline{\mathrm{AE}} = \overline{\mathrm{AD}}$ 이므로 10 = 7 + (x - 2) $\therefore x = 5$

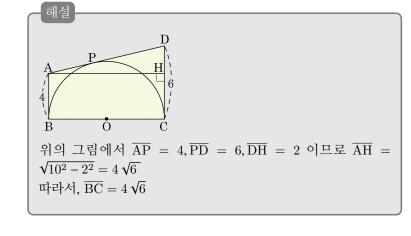
24. 다음 그림에서 세 점 D, E, F 는 원 O 의 접점일 때, $\triangle ABC$ 의 둘레의 길이를 구하여라.

답:

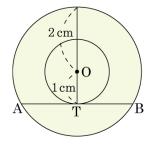
 $\underline{\mathrm{cm}}$


▷ 정답: 16cm

 $\overline{AE} = \overline{AF}$, $\triangle ABC$ 의 둘레= $\overline{AE} + \overline{AF} = 2\overline{AF}$

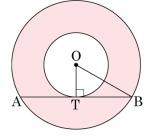

해설

∴ △ABC 의 둘레= 2 × 8 = 16(cm)


25. 다음 그림에서 \overline{BC} 는 원 O 의 지름이고 \overline{AB} , \overline{CD} , \overline{AD} 는 모두 원 O 의 접선일 때, \overline{BC} 의 길이는?

① $2\sqrt{3}$ ② $4\sqrt{3}$ ③ $4\sqrt{6}$ ④ 6 ⑤ $6\sqrt{3}$

26. 다음 그림과 같이 원 O 를 중심으로 하고 반지름의 길이가 각각 2cm, 1cm 인 두 원 이 있다. 작은 원에 접하는 \overline{AB} 의 길이 는?



- ① 2 cm ④ 4 cm
- ② $2\sqrt{2}$ cm ③ $4\sqrt{3}$ cm
- $\boxed{3}$ 2 $\sqrt{3}$ cm

해설

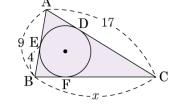
 $\overline{OA} = 2 \text{ cm}, \overline{OT} = 1 \text{ cm}$ $\overline{AT} = \sqrt{2^2 - 1^2} = \sqrt{3} (\text{ cm})$ $\therefore \overline{AB} = 2\overline{AT} = 2\sqrt{3} (\text{ cm})$

27. 다음 그림과 같이 두 원의 중심은 O 이고 색칠한 부분의 넓이가 64πcm² 일 때, 작은 원에 접하는 현 AB 의 길이를 구하여라.
 (단, T 는 접점)

정답: 16 cm

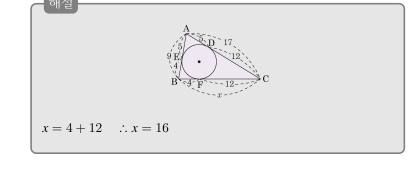
▶ 답:

큰 원의 반지름: R, 작은 원의 반지름: r

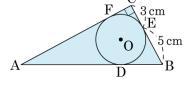

해설

 $R^2\pi - r^2\pi = 64\pi$, $R^2 - r^2 = 64$ $\triangle OTB$ 에서 $R^2 - r^2 = \overline{BT^2} = 64$ 이므로 $\overline{BT} = 8 \text{ cm}$

 $\overline{AB} = 2\overline{BT} = 16 \,\mathrm{cm}$


 $\underline{\mathrm{cm}}$

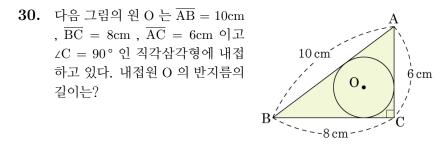
28. 원 O 가 △ABC 의 각 변과 점 D, E, F 에서 접할 때, *x* 의 값을 구하여라.



▷ 정답: 16

29. 다음 그림에서 원 $O \leftarrow \angle C = 90^{\circ}$ 인 직각삼각형 ABC 의 내접원이 고, 점 D, E, F 는 접점이다. $\overline{\mathrm{BE}}$ = $5\mathrm{cm},\;\overline{\mathrm{EC}}=3\mathrm{cm}$ 일 때, $\overline{\mathrm{AB}}$ 의 길 이는?

- \bigcirc 10cm 4 15cm
- \bigcirc 12cm (5) 17cm
- 313.5cm


 $\overline{\mathrm{BD}} = \overline{\mathrm{BE}} = 5\mathrm{cm}, \overline{\mathrm{EC}} = \overline{\mathrm{FC}} = 3\mathrm{cm}$ 이고

해설

 $\overline{\mathrm{AD}} = \overline{\mathrm{AF}} = x\mathrm{cm}$ 라 하면 직각삼각형의 피타고라스 정리에 의해서 $\overline{AB}^2 = \overline{BC}^2 + \overline{AC}^2$

 $\therefore x = 12(\text{cm})$ 따라서 $\overline{AB} = 17 \mathrm{cm}$ 이다.

 $(x+5)^2 = 8^2 + (x+3)^2$

① 1cm ② $\frac{3}{2}$ cm ③ 2cm ④ $\frac{5}{2}$ cm ⑤ 3cm

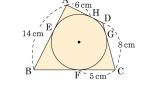
해설

원 O 와 직각삼각형 ABC 의 접점을 각각 D, E, F 라고 하고, 원의 반지름을 r라고 하자. □CFOE 가 정사각형이므로 $\overline{\text{CF}} = \overline{\text{CE}} = r \text{ (cm)}$ $\overline{\text{BD}} = \overline{\text{BE}} = \overline{\text{BC}} - \overline{\text{CE}} =$ 8 - r(cm), $\overline{\text{AD}} = \overline{\text{AF}} =$ $\overline{\text{AC}} - \overline{\text{CF}} = 6 - r(\text{cm})$, $\overline{\text{AB}} =$ $\overline{\text{BD}} + \overline{\text{AD}}$ 10 = (8 - r) + (6 - r), 2r = 4, $\therefore r = 2(\text{cm})$ 31. 다음 그림과 같이 사각형 ABCD는 원 O의 외접사각형이고 점 E, F, G, H는 접점이다. 이때, □ABCD 의 둘레를 구하여라.

E O G

 ► 답:

 ▷ 정답:
 30


해설

 $\overline{\mathrm{DH}} = \overline{\mathrm{DG}} = 2$ 이고,

 $\overline{AB} + \overline{CD} = \overline{BC} + \overline{AD} = 15$ 따라서 둘레는 $\overline{AB} + \overline{CD} + \overline{BC} + \overline{AD} = 30$ 이다.

외접사각형의 성질에 의해서

32. 다음 그림에서 □ABCD 는 원 O 에 외접하고, 점 E, F, G, H 는 각각 원 O 의 접점이다. 이때, \overline{BC} – \overline{AD} 의 값은?

 \bigcirc 2cm

해설

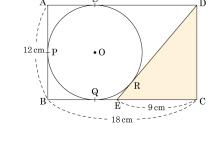
② 3cm

34cm

④ 5cm

⑤ 6cm

 $\overline{AH} = \overline{AE} = 6(cm),$


 $\overline{\mathrm{BE}} = \overline{\mathrm{BF}} = 14 - 6 = 8 (\mathrm{cm}),$

 $\overline{\mathrm{CF}} = \overline{\mathrm{CG}} = 5(\mathrm{cm}),$

 $\overline{\mathrm{DG}} = \overline{\mathrm{DH}} = 8 - 5 = 3 \mathrm{(cm)}$

 $\therefore \overline{BC} - \overline{AD} = 13 - 9 = 4 \text{ (cm)}$

33. 다음 그림과 같이 원 O 는 직사각형 ABCD 의 세변과 \overline{DE} 에 접하고, 점 R 은 접점이다. $\overline{AB}=12cm,\overline{BC}=18cm,\overline{CE}=9cm$ 일 때, \overline{DR} 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

➢ 정답: 12cm

▶ 답:

 $\overline{\text{CE}} = 9 \text{cm}$ 이므로 $\overline{\text{BE}} = 9 \text{cm}$, 외접하는 사각형의 성질에 의해 $\overline{\text{ED}} + \overline{\text{AD}} + \overline{\text{DE}}$

 $\overline{ED} + \overline{AB} = \overline{AD} + \overline{BE}$ $\overline{DE} + 12 = 18 + 9$

 $\therefore \overline{\rm DE} = 15\,{\rm cm}$

또한, $\overline{BE} = 9 \, \text{cm}$, $\overline{BQ} = \frac{1}{2} \overline{AB} = 6 \, \text{cm}$ $\therefore \overline{QE} = \overline{ER} = 3 \, \text{cm}$

따라서, $\overline{\mathrm{DR}} = 15 - 3 = 12 (\mathrm{\,cm})$ 이다.